Back to Search
Start Over
Geological gas‐storage shapes deep life
- Source :
- Environmental Microbiology, Environmental Microbiology, Society for Applied Microbiology and Wiley-Blackwell, 2019, 21 (10), pp.3953-3964. |. ⟨10.1111/1462-2920.14745⟩
- Publication Year :
- 2019
- Publisher :
- Wiley, 2019.
-
Abstract
- International audience; Around the world, several dozen deep sedimentary aquifers are being used for storage of natural gas. Ad hoc studies of the microbial ecology of some of them have suggested that sulfate reducing and methanogenic microorganisms play a key role in how these aquifers' communities function. Here, we investigate the influence of gas storage on these two metabolic groups by using high-throughput sequencing and show the importance of sulfate-reducing Desulfotomaculum and a new monophyletic methanogenic group. Aquifer microbial diversity was significantly related to the geological level. The distance to the stored natural gas affects the ratio of sulfate-reducing Firmicutes to deltaproteobacteria. In only one aquifer, the methanogenic archaea dominate the sulfate-reducers. This aquifer was used to store town gas (containing at least 50% H2 ) around 50 years ago. The observed decrease of sulfates in this aquifer could be related to stimulation of subsurface sulfate-reducers. These results suggest that the composition of the microbial communities is impacted by decades old transient gas storage activity. The tremendous stability of these gas-impacted deep subsurface microbial ecosystems suggests that in situ biotic methanation projects in geological reservoirs may be sustainable over time.
- Subjects :
- Deltaproteobacteria
Geologic Sediments
Earth science
Firmicutes
Aquifer
Natural Gas
Microbiology
03 medical and health sciences
Microbial ecology
[CHIM.ANAL]Chemical Sciences/Analytical chemistry
Natural gas
RNA, Ribosomal, 16S
Coal gas
Ecosystem
Groundwater
Ecology, Evolution, Behavior and Systematics
030304 developmental biology
0303 health sciences
geography
geography.geographical_feature_category
biology
Sulfates
030306 microbiology
business.industry
Microbiota
Geology
[CHIM.MATE]Chemical Sciences/Material chemistry
biology.organism_classification
Archaea
6. Clean water
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry
[CHIM.POLY]Chemical Sciences/Polymers
Desulfotomaculum
13. Climate action
business
Subjects
Details
- ISSN :
- 14622920 and 14622912
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- Environmental Microbiology
- Accession number :
- edsair.doi.dedup.....300cc0ee71cb1ac489bbbaf27593ffc3
- Full Text :
- https://doi.org/10.1111/1462-2920.14745