Back to Search Start Over

Cross-Paced Representation Learning with Partial Curricula for Sketch-based Image Retrieval

Authors :
Xavier Alameda-Pineda
Nicu Sebe
Jingkuan Song
Elisa Ricci
Dan Xu
Department of Information Engineering and Computer Science (University of Trento ) ( DISI )
University of Trento [Trento]
Interpretation and Modelling of Images and Videos ( PERCEPTION )
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Laboratoire Jean Kuntzmann ( LJK )
Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Institut National Polytechnique de Grenoble ( INPG )
Fondazione Bruno Kessler [Trento, Italy] ( FBK )
Department of Information Engineering and Computer Science (University of Trento ) (DISI)
Interpretation and Modelling of Images and Videos (PERCEPTION )
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Fondazione Bruno Kessler [Trento, Italy] (FBK)
Source :
IEEE Transactions on Image Processing, IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2018, 27 (9), pp. 4410-4421. 〈10.1109/TIP.2018.2837381〉, IEEE Transactions on Image Processing, 2018, 27 (9), pp. 4410-4421. ⟨10.1109/TIP.2018.2837381⟩, IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2018, 27 (9), pp. 4410-4421. ⟨10.1109/TIP.2018.2837381⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; In this paper we address the problem of learning robust cross-domain representations for sketch-based image retrieval (SBIR). While most SBIR approaches focus on extracting low-and mid-level descriptors for direct feature matching, recent works have shown the benefit of learning coupled feature representations to describe data from two related sources. However, cross-domain representation learning methods are typically cast into non-convex minimization problems that are difficult to optimize, leading to unsatisfactory performance. Inspired by self-paced learning, a learning methodology designed to overcome convergence issues related to local optima by exploiting the samples in a meaningful order (i.e. easy to hard), we introduce the cross-paced partial curriculum learning (CPPCL) framework. Compared with existing self-paced learning methods which only consider a single modality and cannot deal with prior knowledge, CPPCL is specifically designed to assess the learning pace by jointly handling data from dual sources and modality-specific prior information provided in the form of partial curricula. Additionally, thanks to the learned dictionaries, we demonstrate that the proposed CPPCL embeds robust coupled representations for SBIR. Our approach is extensively evaluated on four publicly available datasets (i.e. CUFS, Flickr15K, QueenMary SBIR and TU-Berlin Extension datasets), showing superior performance over competing SBIR methods.

Details

Language :
English
ISSN :
10577149
Database :
OpenAIRE
Journal :
IEEE Transactions on Image Processing, IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2018, 27 (9), pp. 4410-4421. 〈10.1109/TIP.2018.2837381〉, IEEE Transactions on Image Processing, 2018, 27 (9), pp. 4410-4421. ⟨10.1109/TIP.2018.2837381⟩, IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2018, 27 (9), pp. 4410-4421. ⟨10.1109/TIP.2018.2837381⟩
Accession number :
edsair.doi.dedup.....30047bbcb304ea465c56de55a7fe1300