Back to Search Start Over

Machine Learning for Predicting Pathological Complete Response in Patients with Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy

Authors :
Wei-Chih Su
Ming-Yii Huang
Chun-Ming Huang
Jaw-Yuan Wang
Hsiang Lin Tsai
Ching-Wen Huang
Wei Chiao Chang
Hon Yi Shi
Source :
Scientific Reports, Vol 10, Iss 1, Pp 1-10 (2020), Scientific Reports
Publication Year :
2020
Publisher :
Research Square Platform LLC, 2020.

Abstract

For patients with locally advanced rectal cancer (LARC), achieving a pathological complete response (pCR) after neoadjuvant chemoradiotherapy (CRT) provides them with the optimal prognosis. However, no reliable prediction model is presently available. We evaluated the performance of an artificial neural network (ANN) model in pCR prediction in patients with LARC. Predictive accuracy was compared between the ANN, k-nearest neighbor (KNN), support vector machine (SVM), naïve Bayes classifier (NBC), and multiple logistic regression (MLR) models. Data from two hundred seventy patients with LARC were used to compare the efficacy of the forecasting models. We trained the model with an estimation data set and evaluated model performance with a validation data set. The ANN model significantly outperformed the KNN, SVM, NBC, and MLR models in pCR prediction. Our results revealed that the post-CRT carcinoembryonic antigen is the most influential pCR predictor, followed by intervals between CRT and surgery, chemotherapy regimens, clinical nodal stage, and clinical tumor stage. The ANN model was a more accurate pCR predictor than other conventional prediction models. The predictors of pCR can be used to identify which patients with LARC can benefit from watch-and-wait approaches.

Details

Database :
OpenAIRE
Journal :
Scientific Reports, Vol 10, Iss 1, Pp 1-10 (2020), Scientific Reports
Accession number :
edsair.doi.dedup.....2fe5ed9d8d8d5e6f1dcc8653346e04d7