Back to Search Start Over

Use of the C4.5 machine learning algorithm to test a clinical guideline-based decision support system

Authors :
Jb, Lamy
Ellini A
Ebrahiminia V
Jean-Daniel ZUCKER
Falcoff H
Venot A
Laboratoire d'Informatique Médicale et de BIOinformatique (LIM&BIO)
Université Paris 13 (UP13)
Département d'information hospitalier
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Henri Mondor-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)
Unité de modélisation mathématique et informatique des systèmes complexes [Bondy] (UMMISCO)
Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Yaoundé I-Institut de la francophonie pour l'informatique-Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)-Université Gaston Bergé (Saint-Louis, Sénégal)-Université Cadi Ayyad [Marrakech] (UCA)
Société de Formation Thérapeutique du Généraliste (SFTG)
Université Cadi Ayyad [Marrakech] (UCA)-Université de Yaoundé I-Université Gaston Bergé (Saint-Louis, Sénégal)-Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)-Institut de la francophonie pour l'informatique-Université Pierre et Marie Curie - Paris 6 (UPMC)
Andersen, S.K. (ed.)
Klein, G.O. (ed.)
Schulz, S. (ed.)
Aarts, J. (ed.)
Mazzoleni, C. (ed.)
Source :
Studies in Health Technology and Informatics, Studies in Health Technology and Informatics, 2008, 136, pp.223-8, ResearcherID, Studies in Health Technology and Informatics, IOS Press, 2008, 136, pp.223-8, Scopus-Elsevier, Europe PubMed Central
Publication Year :
2008
Publisher :
HAL CCSD, 2008.

Abstract

International audience; Well-designed medical decision support system (DSS) have been shown to improve health care quality. However, before they can be used in real clinical situations, these systems must be extensively tested, to ensure that they conform to the clinical guidelines (CG) on which they are based. Existing methods cannot be used for the systematic testing of all possible test cases. We describe here a new exhaustive dynamic verification method. In this method, the DSS is considered to be a black box, and the Quinlan C4.5 algorithm is used to build a decision tree from an exhaustive set of DSS input vectors and outputs. This method was successfully used for the testing of a medical DSS relating to chronic diseases: the ASTI critiquing module for type 2 diabetes.

Details

Language :
English
ISSN :
09269630 and 18798365
Database :
OpenAIRE
Journal :
Studies in Health Technology and Informatics, Studies in Health Technology and Informatics, 2008, 136, pp.223-8, ResearcherID, Studies in Health Technology and Informatics, IOS Press, 2008, 136, pp.223-8, Scopus-Elsevier, Europe PubMed Central
Accession number :
edsair.doi.dedup.....2fcfc834b7749cdd30f46aea9aac70b4