Back to Search Start Over

A novel electrochemical aptasensor based on nontarget-induced high accumulation of methylene blue on the surface of electrode for sensing of α-synuclein oligomer

Authors :
Seyed Mohammad Taghdisi
Khalil Abnous
Morteza Alinezhad Nameghi
Ahmad Sarreshtehdar Emrani
Mohammad Hassanzadeh-Khayat
Noor Mohammad Danesh
Mona Alibolandi
Mohammad Ramezani
Source :
Biosensorsbioelectronics. 123
Publication Year :
2018

Abstract

This study describes a novel electrochemical aptasensor for detection of α-synuclein (α-syn) oligomer, an important biomarker related to Parkinson's and Alzheimer's diseases. The sensing platform is based on exonuclease I (Exo I), terminal deoxynucleotidyl transferase (TdT) and methylene blue. The aptasensor exploits the improved sensitivity because of applications of TdT and Exo I and also a label-free aptamer (Apt). Furthermore, direct immobilization of complementary strand of aptamer (CS) instead of Apt on the surface of electrode prohibits Apt self-assembled monolayer aggregation and keeps the function of the Apt. In the absence of α-syn oligomer, TdT enhances lengths of Apt and CS and so, increases accumulation of methylene blue as redox agent on the surface of electrode, leading to a strong current signal. While in the presence of α-syn oligomer, Exo I digests CS on the electrode surface, resulting in less accumulation of methylene blue on the electrode surface and a weak current signal. The relative electrochemical signal of the aptasensor increased linearly with the logarithm of α-syn oligomer concentration in the range from 60 pM to 150 nM. The detection limit was 10 pM. Furthermore, the sensor showed high precision and repeatability for detection of α-syn oligomer in serum samples.

Details

ISSN :
18734235
Volume :
123
Database :
OpenAIRE
Journal :
Biosensorsbioelectronics
Accession number :
edsair.doi.dedup.....2fafee63242642abdb947e58a7c3abe9