Back to Search
Start Over
Dependence of Saline-Induced Natriuresis upon Exposure of the Kidney to the Physical Effects of Extracellular Fluid Volume Expansion
- Source :
- Journal of Clinical Investigation. 54:1428-1436
- Publication Year :
- 1974
- Publisher :
- American Society for Clinical Investigation, 1974.
-
Abstract
- In many previous studies, the natriuresis induced by saline loading has been demonstrated to persist even though glomerular filtration rate (GFR) has been decreased to below pre-expansion levels by a reduction in renal artery pressure. In such studies, however, the kidney has been exposed to the effects of volume expansion for varying periods of time before renal artery pressure was controlled. The present experiments were designed to evaluate whether this period of exposure induces critical changes in intrarenal factors that are responsible for the natriuresis. Experiments were carried out in rats, in which renal artery pressure was decreased to 70 mm Hg either at the onset of saline loading (immediate clamping experiments) or after 45 min of saline loading had elapsed (delayed clamping experiments). In the delayed clamping experiments, consonant with previous studies, mean sodium excretion, 3.2 μeq/min, remained markedly increased above control, despite a reduction in GFR to 91% of the hydropenic control value. In contrast, when renal artery pressure was comparably reduced at the onset of saline loading mean sodium excretion was only trivially increased, 0.4 μeq/min, although GFR increased to 140% of the hydropenic control value. These results exclude an important role for either a circulating hormone or a reduction in plasma oncotic pressure in the natriuretic response to saline loading, and indicate that intrarenal factors are the critical determinants of the natriuresis. We have used the difference in response to saline loading in the immediate and delayed clamping experiments to evaluate the role of two intrarenal factors, interstitial hydrostatic pressure and renal plasma flow. Interstitial pressure changes were estimated from changes in tubular pressure and diameter by using the in situ compliance characteristics of the tubules. In a group of rats saline loaded without aortic clamping, interstitial pressure increased by 4-5 mm Hg and renal plasma flow increased by 2.5 ml/min. During the period of reduced renal artery pressure, however, neither interstitial pressure nor renal plasma flow was detectably increased above control in either the immediate or the delayed clamping experiments. The only noteworthy difference between the experiments in which a natriuresis occurred (unclamped and delayed clamping studies) and the experiments in which no natriuresis occurred is that in the former group the kidney was at least transiently exposed both to an increase in renal plasma flow and interstitial pressure. These findings indicate, first, that extracellular fluid volume expansion can induce a natriuresis only if the kidney has been exposed to at least a transient increase in either interstitial hydrostatic pressure or renal plasma flow (or both); and, second, that a sustained increase in interstitial pressure and renal plasma flow is not required for the natriuresis to persist.
- Subjects :
- Male
Oncotic pressure
medicine.medical_specialty
Time Factors
Hydrostatic pressure
Natriuresis
Renal function
Blood Pressure
Sodium Chloride
urologic and male genital diseases
Kidney
Kidney Tubules, Proximal
Photometry
Renal Artery
Internal medicine
Extracellular fluid
Pressure
medicine
Animals
Carbon Radioisotopes
Kidney Tubules, Distal
Dehydration
Chemistry
Inulin
Articles
General Medicine
Rats
Perfusion
Kidney Tubules
Endocrinology
medicine.anatomical_structure
Blood pressure
Hematocrit
Regional Blood Flow
Renal blood flow
Isotonic Solutions
Extracellular Space
Glomerular Filtration Rate
Subjects
Details
- ISSN :
- 00219738
- Volume :
- 54
- Database :
- OpenAIRE
- Journal :
- Journal of Clinical Investigation
- Accession number :
- edsair.doi.dedup.....2f9d643d3cafae078bd16ba9cd65889f