Back to Search Start Over

Broadband dielectric spectroscopic, calorimetric, and FTIR-ATR investigations of D-arabinose aqueous solutions

Authors :
Juan Colmenero
Silvina Cerveny
Angel Alegría
Lokendra P. Singh
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2011
Publisher :
Wiley-VCH, 2011.

Abstract

The dielectric relaxation behavior of D-arabinose aqueous solutions at different water concentrations is examined by broadband dielectric spectroscopy in the frequency range of 10-2-107 Hz and in the temperature range of 120-300 K. Differential scanning calorimetry is also performed to find the glass transition temperatures (Tg). In addition, the same solutions are analyzed by Fourier transform infrared (FTIR) spectroscopy using the attenuated total reflectance (ATR) method at the same temperature interval and in the frequency range of 3800-2800 cm-1. The temperature dependence of the relaxation times is examined for the different weight fractions (xw) of water along with the temperature dependence of dielectric strength. Two relaxation processes are observed in the aqueous solutions for all concentrations of water. The slower process, the so-called primary relaxation process (process-I), is responsible for the Tg whereas the faster one (designated as process-II) is due to the reorientational motion of the water molecules. As for other hydrophilic water solutions, dielectric data for process-II indicate the existence of a critical water concentration above which water mobility is less restricted. Accordingly, FTIR-ATR measurements on aqueous solutions show an increment in the intensity (area) of the O-H stretching sub-band close to 3200 cm-1 as the water concentration increases.<br />Funded by: Spanish Ministry of Education. Grant Number: MAT-2007-63681; European Union. Grant Number: 502235-2; SOFTCOMP and Basque Government. Grant Number: IT-436-07.

Details

Language :
English
ISSN :
14394235
Database :
OpenAIRE
Journal :
ChemPhysChem
Accession number :
edsair.doi.dedup.....2f967bc56a4d818abedf84d76efa676d