Back to Search Start Over

Antimicrobial susceptibility, virulence gene profiles and molecular subtypes of Salmonella Newport isolated from humans and other sources

Authors :
Ming Liao
Xianmin Shi
Huiming Jin
Xiaowei Yang
Haijian Pan
Weimin Shi
Jianghong Meng
Xuebin Xu
Xudong Su
Jianmin Zhang
Dai Kuang
Source :
Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 36
Publication Year :
2015

Abstract

Salmonella Newport (S. Newport) is a major serotype associated with human salmonellosis. A total of 79 S. Newport recovered from humans and other sources in China were characterized for antimicrobial susceptibility, virulence gene profiles and molecular subtypes using pulsed field gel electrophoresis (PFGE). Approximately 63.3% of the isolates were susceptible to all of 16 antimicrobials tested. Nearly one third of the isolates (31.6%) were resistant to sulfisoxazole, 20.3% to tetracycline and 13.9% to nalidixic acid. Twelve isolates (15.2%) were resistant to three or more antimicrobials. Among 10 virulence genes detected, Salmonella pathogenicity island genes avrA, ssaQ, mgtC, siiD, and sopB and fimbrial gene bcfC were present in most of the isolates (93.7% to 100%). Overall, we observed nine distinct virulence gene profiles, three of which (VP1, VP2 and VP3) were most common (86.1%). A total of 56 PFGE patterns were identified and mainly grouped into seven clusters (A to G) with 80% pattern similarity. Isolates from aquatic product shared a high similarity with those from humans in several clusters, highlighting a potential risk of aquatic product as a source of S. Newport that infect humans. Furthermore, there was a strong association between certain PFGE clusters and virulence gene profiles, suggesting virulence subtyping can be a useful epidemiological tool to discriminate S. Newport isolates.

Details

ISSN :
15677257
Volume :
36
Database :
OpenAIRE
Journal :
Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases
Accession number :
edsair.doi.dedup.....2f91866b2a3e64029fa31b684605d85c