Back to Search
Start Over
Multisite NHERF1 phosphorylation controls GRK6A regulation of hormone-sensitive phosphate transport
- Source :
- The Journal of Biological Chemistry, Vistrup-Parry, M, Sneddon, W B, Bach, S, Strømgaard, K, Friedman, P A & Mamonova, T 2021, ' Multisite NHERF1 phosphorylation controls GRK6A regulation of hormone-sensitive phosphate transport ', Journal of Biological Chemistry, vol. 296, 100473 . https://doi.org/10.1016/j.jbc.2021.100473
- Publication Year :
- 2020
-
Abstract
- The type II sodium-dependent phosphate cotransporter (NPT2A) mediates renal phosphate uptake. The NPT2A is regulated by parathyroid hormone (PTH) and fibroblast growth factor 23, which requires Na+/H+ exchange regulatory factor-1 (NHERF1), a multidomain PDZ-containing phosphoprotein. Phosphocycling controls the association between NHERF1 and the NPT2A. Here, we characterize the critical involvement of G protein–coupled receptor kinase 6A (GRK6A) in mediating PTH-sensitive phosphate transport by targeted phosphorylation coupled with NHERF1 conformational rearrangement, which in turn allows phosphorylation at a secondary site. GRK6A, through its carboxy-terminal PDZ recognition motif, binds NHERF1 PDZ1 with greater affinity than PDZ2. However, the association between NHERF1 PDZ2 and GRK6A is necessary for PTH action. Ser162, a PKCα phosphorylation site in PDZ2, regulates the binding affinity between PDZ2 and GRK6A. Substitution of Ser162 with alanine (S162A) blocks the PTH action but does not disrupt the interaction between NHERF1 and the NPT2A. Replacement of Ser162 with aspartic acid (S162D) abrogates the interaction between NHERF1 and the NPT2A and concurrently PTH action. We used amber codon suppression to generate a phosphorylated Ser162(pSer162)-PDZ2 variant. KD values determined by fluorescence anisotropy indicate that incorporation of pSer162 increased the binding affinity to the carboxy terminus of GRK6A 2-fold compared with WT PDZ2. Molecular dynamics simulations predict formation of an electrostatic network between pSer162 and Asp183 of PDZ2 and Arg at position −1 of the GRK6A PDZ-binding motif. Our results suggest that PDZ2 plays a regulatory role in PTH-sensitive NPT2A-mediated phosphate transport and phosphorylation of Ser162 in PDZ2 modulates the interaction with GRK6A.
- Subjects :
- 0301 basic medicine
Protein Conformation
Parathyroid hormone
PDZ Domains
TBST, Tris-buffered saline plus Tween 20
GRK6A, G protein–coupled receptor kinase 6A
Biochemistry
GRK6Act-9, -568SEEELPTRL576
binding affinity
OKH, opossum kidney clone H
Phosphorylation
PTH, parathyroid hormone
Receptor
Alanine
GRK6Act-22, -553QRLFSRQDCCGNCSEEELPTRL576
Chemistry
Kinase
FA, fluorescence anisotropy
simulation
Cell biology
pSer162, phosphorylated Ser162
Parathyroid Hormone
CFTR, cystic fibrosis transmembrane conductance regulator
Protein Binding
Research Article
NPT2A, type II sodium-dependent phosphate cotransporter
Sodium-Hydrogen Exchangers
PDZ domain
Molecular Dynamics Simulation
Sodium-Phosphate Cotransporter Proteins, Type IIa
parathyroid hormone (PTH)
Phosphates
03 medical and health sciences
C-terminal, carboxy-terminal
Humans
phosphate transport
Molecular Biology
Ion Transport
030102 biochemistry & molecular biology
Biological Transport
Cell Biology
NHERF1, Na+/H+-exchanger regulatory factor-1
G-Protein-Coupled Receptor Kinases
Phosphoproteins
Fibroblast Growth Factors
PDZ-ligand interaction
Fibroblast Growth Factor-23
030104 developmental biology
G protein–coupled receptor kinase 6A (GRK6A)
EBD, ezrin-binding domain
Phosphoprotein
OK cells, opossum kidney cells
Cotransporter
Subjects
Details
- ISSN :
- 1083351X
- Volume :
- 296
- Database :
- OpenAIRE
- Journal :
- The Journal of biological chemistry
- Accession number :
- edsair.doi.dedup.....2f8aed5c7eaceb38b351bf31d2bca9e9
- Full Text :
- https://doi.org/10.1016/j.jbc.2021.100473