Back to Search Start Over

Rank 3 rigid representations of projective fundamental groups

Authors :
Carlos Simpson
Adrian Langer
Institute of Mathematics, Polish Academy of Sciences
Polska Akademia Nauk = Polish Academy of Sciences (PAN)
Laboratoire Jean Alexandre Dieudonné (JAD)
Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
ANR-13-PDOC-0015,TOFIGROU,Torseurs, fibrés vectoriels et schéma en groupes fondamental(2013)
ANR-16-CE40-0011,Hodgefun,Groupes fondamentaux, Théorie de Hodge et Motifs(2016)
Source :
Compositio Mathematica, Compositio Mathematica, Foundation Compositio Mathematica, 2018, 154 (7), pp.1534-1570. ⟨10.1112/S0010437X18007182⟩
Publication Year :
2018
Publisher :
Wiley, 2018.

Abstract

Let X be a smooth complex projective variety with basepoint x. We prove that every rigid integral irreducible representation $\pi_1(X,x)\to SL (3,{\mathbb C})$ is of geometric origin, i.e., it comes from some family of smooth projective varieties. This partially generalizes an earlier result by K. Corlette and the second author in the rank 2 case and answers one of their questions.<br />Comment: v3, 49 pages; final version, to appear in Compositio Math

Details

ISSN :
15705846 and 0010437X
Volume :
154
Database :
OpenAIRE
Journal :
Compositio Mathematica
Accession number :
edsair.doi.dedup.....2f6e6307b706ad77ca6cf57954663953
Full Text :
https://doi.org/10.1112/s0010437x18007182