Back to Search
Start Over
Rank 3 rigid representations of projective fundamental groups
- Source :
- Compositio Mathematica, Compositio Mathematica, Foundation Compositio Mathematica, 2018, 154 (7), pp.1534-1570. ⟨10.1112/S0010437X18007182⟩
- Publication Year :
- 2018
- Publisher :
- Wiley, 2018.
-
Abstract
- Let X be a smooth complex projective variety with basepoint x. We prove that every rigid integral irreducible representation $\pi_1(X,x)\to SL (3,{\mathbb C})$ is of geometric origin, i.e., it comes from some family of smooth projective varieties. This partially generalizes an earlier result by K. Corlette and the second author in the rank 2 case and answers one of their questions.<br />Comment: v3, 49 pages; final version, to appear in Compositio Math
- Subjects :
- Pure mathematics
Fundamental group
Rank (differential topology)
01 natural sciences
Higgs bundle
14F35 (primary), 14D06, 14D07, 14E20 (secondary)
Mathematics - Algebraic Geometry
Factorization
0103 physical sciences
FOS: Mathematics
Variation of Hodge structure
0101 mathematics
Projective test
Representation (mathematics)
Algebraic Geometry (math.AG)
Projective variety
Mathematics
Algebra and Number Theory
010102 general mathematics
Representation
Rigidity
Irreducible representation
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
010307 mathematical physics
Subjects
Details
- ISSN :
- 15705846 and 0010437X
- Volume :
- 154
- Database :
- OpenAIRE
- Journal :
- Compositio Mathematica
- Accession number :
- edsair.doi.dedup.....2f6e6307b706ad77ca6cf57954663953
- Full Text :
- https://doi.org/10.1112/s0010437x18007182