Back to Search Start Over

Preferential Location of Dopants in the Amorphous Phase of Oriented Regioregular Poly(3‐hexylthiophene‐2,5‐diyl) Films Helps Reach Charge Conductivities of 3000 S cm −1

Authors :
Yuhan Zhong
Viktoriia Untilova
Dominique Muller
Shubhradip Guchait
Céline Kiefer
Laurent Herrmann
Nicolas Zimmermann
Marion Brosset
Thomas Heiser
Martin Brinkmann
Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube)
École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Institut Charles Sadron (ICS)
Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
ANR-17-CE05-0012,Anisotherm,Matériaux polymère thermoélectriques anisotropes(2017)
Brinkmann, Martin
Source :
Advanced Functional Materials, Advanced Functional Materials, 2022, 32 (30), pp.2202075. ⟨10.1002/adfm.202202075⟩
Publication Year :
2022
Publisher :
Wiley, 2022.

Abstract

International audience; Doping polymer semiconductors is a central topic in plastic electronics and especially in the design of novel thermoelectric (TE) materials. In this contribution, it has been demonstrated that doping of oriented semicrystalline P3HT thin films with the dopant tris(4-bromophenyl)ammoniumyl hexachloroantimonate), known as magic blue (MB), helps reach charge conductivities of 3000 S cm−1 and TE power factors of 170 ± 30 μW mK−2 along the polymer chain direction. A combination of transmission electron microscopy, polarized optical absorption spectroscopy, Rutherford backscattering, and TE property measurements helps clarify the conditions necessary to achieve such high charge conductivities. A comparative study with different dopants demonstrates that the doping mechanism is intimately related to the semicrystalline structure of the polymer and whether crystalline, amorphous or both phases are doped. The highest charge mobilities are observed when the dopant MB is preferentially located in the amorphous phase of P3HT, leaving the structure of P3HT nanocrystals almost unaltered. In this case, the P3HT nanocrystals are doped from their interface with the surrounding amorphous phase. These results indicate that doping preferentially the amorphous phase of semicrystalline polymer semiconductors is an effective strategy to reduce polaron localization, enhance charge mobilities, and improve TE power factors

Details

ISSN :
16163028 and 1616301X
Volume :
32
Database :
OpenAIRE
Journal :
Advanced Functional Materials
Accession number :
edsair.doi.dedup.....2f4c39847219a13ac2697eb5aa8640a9
Full Text :
https://doi.org/10.1002/adfm.202202075