Back to Search Start Over

Unusual massive magnetite veins and highly altered Cr-spinels as relics of a Cl-rich acidic hydrothermal event in Neoproterozoic serpentinites (Bou Azzer ophiolite, Anti-Atlas, Morocco)

Authors :
J. Carlut
Sonia Rousse
Mélina Macouin
Nasser Ennih
Antoine Triantafyllou
Ricardo I.F. Trindade
Julien Berger
Florent Hodel
Source :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2017

Abstract

If magnetite is a common serpentinization product, centimetric, massive and pure magnetite veins are rarely observed in serpentinites. Unique example, in the Ait Ahmane ultramafic unit (Bou Azzer Neoproterozoic ophiolite, Anti-Atlas, Morocco) allows to assess the hydrothermal processes that prevailed at the ending Precambrian. In this study, rock magnetism, petrography, mineral and bulk chemistry are combined to assess iron behavior in these meta-ultramafics, in order to constrain the serpentinites alteration and magnetite veins formation processes. Very high Cr#, low Mg#, high Fe 3+ # and low Ti content of Cr-spinels cores reflect a supra-subduction zone origin for the Ait Ahmane serpentinites precursor. Typical lizardite/chrysotile pseudomorphic texture in fresh serpentinites reveals an initial oceanic-like serpentinization, involving temperature 200 °C. Magnetic measurements reveal a lower magnetite content in hydrothermalized serpentinites hosting the magnetite veins, with lowest values (down to 0.58 wt%) for bleached serpentinites constituting the wall rock of the veins. These magnetic data are consistent with bulk rock chemistry showing a lower total iron content in hydrothermalized serpentinites. Hysteresis parameters and thermomagnetic measurements denote a magnetic grains size that increases with the alteration, associated with the emergence of a new magnetic phase (Cr-magnetite) produced by Cr-spinels alteration. A new proxy, based on thermomagnetic measurements, the CrM/M ratio, provides a quantification of its contribution to the magnetic susceptibility. Mineral chemistry allowed to identify the Cr-spinels alteration sequence and reveals an important chlorine enrichment in serpentine phases from hydrothermalized serpentinites. These results suggest that a Cl-rich acidic hydrothermal event involving temperatures below 350 °C produced an intense magnetite leaching in the host serpentinite and an advanced Cr-spinels alteration to ferritchromite and Cr-magnetite. Iron provided by this leaching have led to the formation of unique magnetite veins in the Ait Ahmane ultramafic unit. Two different settings are proposed for the hydrothermal event: (1) a continental hydrothermal system as advanced for the Co-Ni-As ores in the Bou Azzer inlier or (2) an oceanic black smoker type hydrothermal vent field on the Neoproterozoic seafloor.

Details

Database :
OpenAIRE
Journal :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Accession number :
edsair.doi.dedup.....2f46f77d89372aae5ca23ad1c204f71d