Back to Search Start Over

LL37 and hBD-3 elevate the β-1,3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic

Authors :
Chung-Yu Lan
Hao Teng Chang
Yu Shu Liu
Tzu Shan Chien
Pei Wen Tsai
Hsin Hui Huang
Source :
Biochemical Journal. 441:963-970
Publication Year :
2012
Publisher :
Portland Press Ltd., 2012.

Abstract

The opportunistic fungus Candida albicans causes oral thrush and vaginal candidiasis, as well as candidaemia in immunocompromised patients including those undergoing cancer chemotherapy, organ transplant and those with AIDS. We previously found that the AMPs (antimicrobial peptides) LL37 and hBD-3 (human β-defensin-3) inhibited C. albicans viability and its adhesion to plastic. For the present study, the mechanism by which LL37 and hBD-3 reduced C. albicans adhesion was investigated. After AMP treatment, C. albicans adhesion to plastic was reduced by up to ~60% and was dose-dependent. Our previous study indicated that LL37 might interact with the cell-wall β-1,3-exoglucanase Xog1p, which is involved in cell-wall β-glucan metabolism, and consequently the binding of LL37 or hBD-3 to Xog1p might cause the decrease in adhesion. For the present study, Xog1p(41–438)-6H, an N-terminally truncated, active, recombinant construct of Xog1p and Xog1p fragments were produced and used in pull-down assays and ELISA in vitro , which demonstrated that all constructs interacted with both AMPs. Enzymatic analyses showed that LL37 and hBD-3 enhanced the β-1,3-exoglucanase activity of Xog1p(41–438)-6H approximately 2-fold. Therefore elevated Xog1p activity might compromise cell-wall integrity and decrease C. albicans adhesion. To test this hypothesis, C. albicans was treated with 1.3 μM Xog1p(41–438)-6H and C. albicans adhesion to plastic decreased 47.7%. Taken together, the evidence suggests that Xog1p is one of the LL37/hBD-3 targets, and elevated β-1,3-exoglucanase activity reduces C. albicans adhesion to plastic.

Details

ISSN :
14708728 and 02646021
Volume :
441
Database :
OpenAIRE
Journal :
Biochemical Journal
Accession number :
edsair.doi.dedup.....2eea89c3e46eb9c6e211481c72ef1fb8