Back to Search Start Over

Tracking 3D Object using Flexible Models

Authors :
Lucie Masson
Frédéric Jurie
Michel Dhome
Laboratoire des sciences et matériaux pour l'électronique et d'automatique (LASMEA)
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Centre National de la Recherche Scientifique (CNRS)
Learning and recognition in vision (LEAR)
Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
William Clocksin and Andrew Fitzgibbon and Philip Torr
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Inria Grenoble - Rhône-Alpes
Source :
British Machine Vision Conference (BMVC '05), British Machine Vision Conference (BMVC '05), Sep 2005, Oxford, United Kingdom, BMVC
Publication Year :
2005
Publisher :
HAL CCSD, 2005.

Abstract

International audience; This article proposes a flexible tracker which can estimate motion and deformations of 3D objects by considering their appearances as nonrigid surfaces. In this approach, a flexible model is built by matching features (key points) over training sequences and by learning the deformations of a spline based model. This statistical model captures the variations in the appearance of objects caused by 3D pose variations. Visual tracking is then possible, for each new frame, by matching local features of the model according to their local appearances as well as optimal optimization of the constraints provided by the flexible model. The approach is demonstrated on real-world images sequences.

Details

Language :
English
Database :
OpenAIRE
Journal :
British Machine Vision Conference (BMVC '05), British Machine Vision Conference (BMVC '05), Sep 2005, Oxford, United Kingdom, BMVC
Accession number :
edsair.doi.dedup.....2ec00261d05d1ff4e029c883b66ba379