Back to Search Start Over

Efficient preconditioners for solving dynamical optimal transport via interior point methods

Authors :
Facca, Enrico
Todeschi, Gabriele
Natale, Andrea
Benzi, Michele
Reliable numerical approximations of dissipative systems (RAPSODI )
Laboratoire Paul Painlevé (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
University of Bergen (UiB)
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales (MOKAPLAN)
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut des Sciences de la Terre (ISTerre)
Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
Laboratoire de Mathématiques d'Orsay (LMO)
Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Scuola Normale Superiore di Pisa (SNS)
This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01)
EF work was partially supported by EU MSCA project N°104109101(NIOT).
ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011)
Department of Mathematics and Computer Science [Emory University]
Emory University [Atlanta, GA]
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

In this paper we address the numerical solution of the quadratic optimal transport problem in its dynamical form, the so-called Benamou-Brenier formulation. When solved using interior point methods, the main computational bottleneck is the solution of large saddle point linear systems arising from the associated Newton-Raphson scheme. The main purpose of this paper is to design efficient preconditioners to solve these linear systems via iterative methods. Among the proposed preconditioners, we introduce one based on the partial commutation of the operators that compose the dual Schur complement of these saddle point linear systems, which we refer as $\boldsymbol{B}\boldsymbol{B}$-preconditioner. A series of numerical tests show that the $\boldsymbol{B}\boldsymbol{B}$-preconditioner is the most efficient among those presented, with a CPU-time scaling only slightly more than linearly with respect to the number of unknowns used to discretize the problem.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....2e9d800003a647b1a8f1104e281e26e5