Back to Search Start Over

Combining metaheuristics with mathematical programming, constraint programming and machine learning

Authors :
El-Ghazali Talbi
Parallel Cooperative Multi-criteria Optimization (DOLPHIN)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Annals of Operations Research, Annals of Operations Research, Springer Verlag, 2016, 240 (1), pp.171-215, Annals of Operations Research, 2016, 240 (1), pp.171-215
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for many optimization problems in science and industry are obtained by hybrid optimization algorithms. Combinations of optimization tools such as metaheuristics, mathematical programming, constraint programming and machine learning, have provided very efficient optimization algorithms. Four different types of combinations are considered in this paper: (i) Combining metaheuristics with complementary metaheuristics. (ii) Combining metaheuristics with exact methods from mathematical programming approaches which are mostly used in the operations research community. (iii) Combining metaheuristics with constraint programming approaches developed in the artificial intelligence community. (iv) Combining metaheuristics with machine learning and data mining techniques.

Details

Language :
English
ISSN :
02545330 and 15729338
Database :
OpenAIRE
Journal :
Annals of Operations Research, Annals of Operations Research, Springer Verlag, 2016, 240 (1), pp.171-215, Annals of Operations Research, 2016, 240 (1), pp.171-215
Accession number :
edsair.doi.dedup.....2e8edad970ce5c603bc9b9b6a64eefe6