Back to Search Start Over

Diffeomorphic metric surface mapping in subregion of the superior temporal gyrus

Authors :
Joan Alexis Glaunès
Michael I. Miller
Marc Vaillant
Anqi Qiu
Center for Imaging Science (CIS)
Johns Hopkins University (JHU)
Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145)
Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)
Center for Imaging Science ( CIS )
Johns Hopkins University ( JHU )
Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 )
Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS )
Source :
NeuroImage, NeuroImage, Elsevier, 2007, 34 (3), pp.1149-59. ⟨10.1016/j.neuroimage.2006.08.053⟩, NeuroImage, Elsevier, 2007, 34 (3), pp.1149-59. 〈10.1016/j.neuroimage.2006.08.053〉
Publication Year :
2007
Publisher :
HAL CCSD, 2007.

Abstract

International audience; This paper describes the application of large deformation diffeomorphic metric mapping to cortical surfaces based on the shape and geometric properties of subregions of the superior temporal gyrus in the human brain. The anatomical surfaces of the cortex are represented as triangulated meshes. The diffeomorphic matching algorithm is implemented by defining a norm between the triangulated meshes, based on the algorithms of Vaillant and Glaunès. The diffeomorphic correspondence is defined as a flow of the extrinsic three dimensional coordinates containing the cortical surface that registers the initial and target geometry by minimizing the norm. The methods are demonstrated in 40 high-resolution MRI cortical surfaces of planum temporale (PT) constructed from subsets of the superior temporal gyrus (STG). The effectiveness of the algorithm is demonstrated via the Euclidean positional distance, distance of normal vectors, and curvature before and after the surface matching as well as the comparison with a landmark matching algorithm. The results demonstrate that both the positional and shape variability of the anatomical configurations are being represented by the diffeomorphic maps.

Details

Language :
English
ISSN :
10538119 and 10959572
Database :
OpenAIRE
Journal :
NeuroImage, NeuroImage, Elsevier, 2007, 34 (3), pp.1149-59. ⟨10.1016/j.neuroimage.2006.08.053⟩, NeuroImage, Elsevier, 2007, 34 (3), pp.1149-59. 〈10.1016/j.neuroimage.2006.08.053〉
Accession number :
edsair.doi.dedup.....2e89d3b8883a8215fd7f48182a454f45