Back to Search Start Over

Nitrogen availability and plant–plant interactions drive leaf silicon concentration in wheat genotypes

Authors :
Felix de Tombeur
Taïna Lemoine
Cyrille Violle
Hélène Fréville
Sarah J. Thorne
Sue E. Hartley
Hans Lambers
Florian Fort
Centre d’Ecologie Fonctionnelle et Evolutive (CEFE)
Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM)
The University of Western Australia (UWA)
Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier
University of York [York, UK]
University of Sheffield [Sheffield]
Agence Nationale de la Recherche ANR-19-E32-0011
European Project: 639706,H2020,ERC-2014-STG,CONSTRAINTS(2015)
Source :
Functional Ecology, Functional Ecology, 2022, 36 (11), pp.2833-2844. ⟨10.1111/1365-2435.14170⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

1. Estimating plasticity of leaf silicon (Si) in response to abiotic and biotic factors underpins our comprehension of plant defences and stress resistance in natural and agroecosystems. However, how nitrogen (N) addition and intraspecific plant–plant interactions affect Si concentration remains unclear.\ud \ud 2. We grew 19 durum wheat genotypes (Triticum turgidum ssp. durum) in pots, either alone or in intra- or intergenotypic cultures of two individuals, and with or without N. Above-ground biomass, plant height and leaf [Si] were quantified at the beginning of the flowering stage.\ud \ud 3. Nitrogen addition decreased leaf [Si] for most genotypes, proportionally to the biomass increase. Si plasticity to plant–plant interactions varied significantly among genotypes, with both increases and decreases in leaf [Si] when mixed with a neighbour, regardless of the mixture type (intra-/intergenotype). Besides, increased leaf [Si] in response to plant–plant interactions was associated with increased plant height.\ud \ud 4. Our results suggest the occurrence of both facilitation and competition for Si uptake from the rhizosphere in wheat mixtures. Future research should identify which leaf and root traits characterise facilitating neighbours for Si acquisition. We also show that Si could be involved in height gain in response to intraspecific competition, possibly for increasing light capture. This important finding opens up new research directions on Si and plant–plant interactions in both natural ecosystems and agroecosystems. More generally, our results stress the need to explore leaf Si plasticity in responses to both abiotic and biotic factors to understand plant stress resistance.

Details

Language :
English
ISSN :
02698463 and 13652435
Database :
OpenAIRE
Journal :
Functional Ecology, Functional Ecology, 2022, 36 (11), pp.2833-2844. ⟨10.1111/1365-2435.14170⟩
Accession number :
edsair.doi.dedup.....2e5c75b0e5d87ab7fa22e7a66acd8059
Full Text :
https://doi.org/10.1111/1365-2435.14170⟩