Back to Search Start Over

Short-Term Ambient Temperature Forecasting for Smart Heaters

Authors :
Danilo Carastan-Santos
Anderson Andrei Da Silva
Alfredo Goldman
Angan Mitra
Yanik Ngoko
Clement Mommessin
Denis Trystram
Instituto de Informática da UFRGS (UFRGS)
Universidade Federal do Rio Grande do Sul [Porto Alegre] (UFRGS)
Data Aware Large Scale Computing (DATAMOVE )
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Institute of Mathematics ans Statistics [Sao Paulo]
University of São Paulo (USP)
Qarnot Computing [Montrouge]
University of Leeds
ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019)
Universidade de São Paulo = University of São Paulo (USP)
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Maintaining Cloud data centers is a worrying challenge in terms of energy efficiency. This challenge leads to solutions such as deploying Edge nodes that operate inside buildings without massive cooling systems. Edge nodes can act assmart heaters by recycling their consumed energy to heat these buildings. We propose a novel technique to perform temperature forecasting for Edge Computing smart heater environments. Our approach uses time series algorithms to exploit historical air temperature data with smart heaters’ power consumption and heat-sink temperatures to create models to predict short-term ambient temperatures. We implemented our approach on top of Facebook’s Prophet time series forecasting framework, and we used the real-time logs from Qarnot Computing as a usecase of a smart heater Edge platform. Our best trained model yields ambient temperature forecasts with less than 2.66% Mean Absolute Percentage Error showing the feasibility of near realtime forecasting.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....2e4345c99ef1d18ed707e72bfd2c13ca