Back to Search
Start Over
A Hilbert Boundary Value Problem for Generalised Cauchy–Riemann Equations
- Source :
- Advances in Applied Clifford Algebras. 27:931-953
- Publication Year :
- 2016
- Publisher :
- Springer Science and Business Media LLC, 2016.
-
Abstract
- We elaborate a boundary Fourier method for studying an analogue of the Hilbert problem for analytic functions within the framework of generalised Cauchy-Riemann equations. The boundary value problem need not satisfy the Shapiro-Lopatinskij condition and so it fails to be Fredholm in Sobolev spaces. We show a solvability condition of the Hilbert problem, which looks like those for ill-posed problems, and construct an explicit formula for approximate solutions.
- Subjects :
- Pure mathematics
Hilbert manifold
Spectral theory
Applied Mathematics
Fredholm operator
msc:47N20
010102 general mathematics
Mathematical analysis
Institut für Mathematik
Cauchy–Riemann equations
Hilbert's nineteenth problem
01 natural sciences
Fredholm theory
Elliptic boundary value problem
010101 applied mathematics
msc:35F45
symbols.namesake
msc:35J56
symbols
Boundary value problem
ddc:510
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 16614909 and 01887009
- Volume :
- 27
- Database :
- OpenAIRE
- Journal :
- Advances in Applied Clifford Algebras
- Accession number :
- edsair.doi.dedup.....2e2a3c398f1c804668fc7144782fb675