Back to Search
Start Over
Cohomological dimension with respect to the linked ideals
- Source :
- Journal of Algebra and Its Applications. 20:2150104
- Publication Year :
- 2020
- Publisher :
- World Scientific Pub Co Pte Ltd, 2020.
-
Abstract
- Let $R$ be a commutative Noetherian ring. Using the new concept of linkage of ideals over a module, we show that if $\mathfrak{a}$ is an ideal of $R$ which is linked by the ideal $I$, then $cd(\mathfrak{a},R) \in \{ grad \mathfrak{a}, cd(\fa, H^{grad \mathfrak{a}}_ {\mathfrak{c}} (R)) + grad \mathfrak{a}\}, $ where $\mathfrak{c} : = \bigcap_{\mathfrak{p} \in Ass \frac{R}{I}- V(\mathfrak{a})}\mathfrak{p}$. Also, it is shown that for every ideal $\mathfrak{b}$ which is geometrically linked with $\mathfrak{a},$ $cd(\mathfrak{a}, H^{grad \mathfrak{b}}_ {\mathfrak{b}} (R))$ does not depend on $\mathfrak{b}$<br />Comment: 12 pages Proposition 2.9, Remark 2.10 and Corollary 2.11 are added
- Subjects :
- Pure mathematics
13C40, 13D45
0102 computer and information sciences
Linkage (mechanical)
Cohomological dimension
Commutative Algebra (math.AC)
01 natural sciences
law.invention
Physics::Plasma Physics
law
FOS: Mathematics
Computer Science::General Literature
0101 mathematics
Mathematics::Representation Theory
Commutative property
ComputingMilieux_MISCELLANEOUS
Mathematics
Noetherian ring
Algebra and Number Theory
Ideal (set theory)
Mathematics::Commutative Algebra
Computer Science::Information Retrieval
Applied Mathematics
010102 general mathematics
Astrophysics::Instrumentation and Methods for Astrophysics
Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)
Mathematics - Commutative Algebra
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
010201 computation theory & mathematics
ComputingMethodologies_DOCUMENTANDTEXTPROCESSING
Subjects
Details
- ISSN :
- 17936829 and 02194988
- Volume :
- 20
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra and Its Applications
- Accession number :
- edsair.doi.dedup.....2e03ea70cd626fbe723373b1860af32f
- Full Text :
- https://doi.org/10.1142/s0219498821501048