Back to Search Start Over

Distress, Suicidality, and Affective Disorders at the Time of Social Networks

Authors :
Guillaume Vaiva
Charles-Edouard Notredame
Margot Morgiève
Jérôme Azé
F Morel
Sofian Berrouiguet
Laboratoire Sciences Cognitives et Sciences Affectives - UMR 9193 (SCALab)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
CERMES3 - Centre de recherche Médecine, sciences, santé, santé mentale, société (CERMES3 - UMR 8211 / U988 / UM 7)
École des hautes études en sciences sociales (EHESS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)
ADVanced Analytics for data SciencE (ADVANSE)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Sciences Cognitives et Sciences Affectives (SCALab) - UMR 9193 (SCALab)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
CHU Lille
Institut du Cerveau = Paris Brain Institute (ICM)
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Hôpital Albert Chenevier
CHRU Brest - Psychiatrie Adulte (CHU - Brest- Psychiatrie)
Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Descartes - Paris 5 (UPD5)-École des hautes études en sciences sociales (EHESS)
Source :
Current Psychiatry Reports, Current Psychiatry Reports, 2019, 21 (10), pp.98. ⟨10.1007/s11920-019-1087-z⟩, Current Psychiatry Reports, Current Medicine Group, 2019, 21 (10), pp.98. ⟨10.1007/s11920-019-1087-z⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; We reviewed how scholars recently addressed the complex relationship that binds distress, affective disorders, and suicidal behaviors on the one hand and social networking on the other. We considered the latest machine learning performances in detecting affective-related outcomes from social media data, and reviewed understandings of how, why, and with what consequences distressed individuals use social network sites. Finally, we examined how these insights may concretely instantiate on the individual level with a qualitative case series. Recent Findings Machine learning classifiers are progressively stabilizing with moderate to high performances in detecting affective-related diagnosis, symptoms, and risks from social media linguistic markers. Qualitatively, such markers appear to translate ambivalent and socially constrained motivations such as self-disclosure, passive support seeking, and connectedness reinforcement. Summary Binding data science and psychosocial research appears as the unique condition to ground a translational web-clinic for treating and preventing affective-related issues on social media.

Details

Language :
English
ISSN :
15233812 and 15351645
Database :
OpenAIRE
Journal :
Current Psychiatry Reports, Current Psychiatry Reports, 2019, 21 (10), pp.98. ⟨10.1007/s11920-019-1087-z⟩, Current Psychiatry Reports, Current Medicine Group, 2019, 21 (10), pp.98. ⟨10.1007/s11920-019-1087-z⟩
Accession number :
edsair.doi.dedup.....2e0041f909e657a16ab80bfcc7be2051
Full Text :
https://doi.org/10.1007/s11920-019-1087-z⟩