Back to Search
Start Over
Alternate two-dimensional quantum walk with a single-qubit coin
- Publication Year :
- 2011
- Publisher :
- arXiv, 2011.
-
Abstract
- We have recently proposed a two-dimensional quantum walk where the requirement of a higher dimensionality of the coin space is substituted with the alternance of the directions in which the walker can move [C. Di Franco, M. Mc Gettrick, and Th. Busch, Phys. Rev. Lett. {\bf 106}, 080502 (2011)]. For a particular initial state of the coin, this walk is able to perfectly reproduce the spatial probability distribution of the non-localized case of the Grover walk. Here, we present a more detailed proof of this equivalence. We also extend the analysis to other initial states, in order to provide a more complete picture of our walk. We show that this scheme outperforms the Grover walk in the generation of $x$-$y$ spatial entanglement for any initial condition, with the maximum entanglement obtained in the case of the particular aforementioned state. Finally, the equivalence is generalized to wider classes of quantum walks and a limit theorem for the alternate walk in this context is presented.<br />Comment: 9 pages, 9 figures, RevTeX4
- Subjects :
- Physics
Quantum Physics
Heterogeneous random walk in one dimension
Two-dimensional quantum walk
Loop-erased random walk
Grover walk
FOS: Physical sciences
Quantum capacity
01 natural sciences
Atomic and Molecular Physics, and Optics
010305 fluids & plasmas
Qubit
Quantum mechanics
0103 physical sciences
Quantum walk
Quantum algorithm
Statistical physics
010306 general physics
Quantum Physics (quant-ph)
Self-avoiding walk
Quantum computer
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....2df76daf5e8f2aa175018d140bd54567
- Full Text :
- https://doi.org/10.48550/arxiv.1107.4400