Back to Search
Start Over
Neuroprotective effects of cilostazol are mediated by multiple mechanisms in a mouse model of permanent focal ischemia
- Source :
- Brain Research. 1602:53-61
- Publication Year :
- 2015
- Publisher :
- Elsevier BV, 2015.
-
Abstract
- The phosphodiesterase (PDE) 3 inhibitor cilostazol, used as an anti-platelet drug, reportedly can also ameliorate ischemic brain injury. Here, we investigated the effects of cilostazol in a permanent focal ischemia mice model. Male Balb/c mice were subjected to permanent middle cerebral artery occlusion. Mice were then treated with either cilostazol (10 or 20mg/kg) or vehicle administered at 30min and 24h post-ischemia, and infarct volumes were assessed at 48h post-ischemia. Mice treated with 20mg/kg of cilostazol or vehicle were sacrificed at 6h or 24h post-ischemia and immunohistochemistry was used for brain sections. Treatment with 20mg/kg of cilostazol significantly reduced infarct volumes to 70.1% of those with vehicle treatment. Immunohistochemistry results for 8-hydroxydeoxyguanosine (OHdG) expression showed that some neurons underwent oxidative stress around the ischemic boundary zone at 6h post-ischemia. Cilostazol treatment significantly reduced the percentage of 8-OHdG-positive neurons (65.8±33.5% with vehicle and 21.3±9.9% with cilostazol). Moreover, NADPH oxidase (NOX) 2-positive neurons were significantly reduced with cilostazol treatment. In contrast, immunohistochemistry results for phosphorylated cyclic-AMP response element binding protein (pCREB) showed that there were significantly more pCREB-positive neurons around the ischemic boundary zone of cilostazol-treated mice than in those of vehicle-treated mice at 24h post-ischemia. These results suggested that cilostazol might have multiple mechanisms of action to ameliorate ischemic tissue damage, by attenuating oxidative stress mediated by suppressing NOX2 expression by ischemic neurons and an anti-apoptotic effect mediated through the pCREB pathway.
- Subjects :
- Male
Time Factors
Response element
Tetrazoles
Pharmacology
medicine.disease_cause
Neuroprotection
Brain Ischemia
medicine
Animals
Phosphorylation
Molecular Biology
Neurons
Mice, Inbred BALB C
Membrane Glycoproteins
NADPH oxidase
Dose-Response Relationship, Drug
biology
business.industry
General Neuroscience
Brain
Deoxyguanosine
Endothelial Cells
NADPH Oxidases
Phosphodiesterase
Infarction, Middle Cerebral Artery
CREB-Binding Protein
Immunohistochemistry
Cilostazol
Disease Models, Animal
Oxidative Stress
Neuroprotective Agents
8-Hydroxy-2'-Deoxyguanosine
Anesthesia
NADPH Oxidase 2
biology.protein
Neurology (clinical)
business
Oxidative stress
Developmental Biology
medicine.drug
Subjects
Details
- ISSN :
- 00068993
- Volume :
- 1602
- Database :
- OpenAIRE
- Journal :
- Brain Research
- Accession number :
- edsair.doi.dedup.....2db18d35254d61beb45682420c33c7b1
- Full Text :
- https://doi.org/10.1016/j.brainres.2015.01.022