Back to Search
Start Over
The role of chemotaxis and efflux pumps on nitrate reduction in the toxic regions of a ciprofloxacin concentration gradient
- Source :
- ISME J
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- Spatial concentration gradients of antibiotics are prevalent in the natural environment. Yet, the microbial response in these heterogeneous systems remains poorly understood. We used a microfluidic reactor to create an artificial microscopic ecosystem that generates diffusive gradients of solutes across interconnected microenvironments. With this reactor, we showed that chemotaxis toward a soluble electron acceptor (nitrate) allowed Shewanella oneidensis MR-1 to inhabit and sustain metabolic activity in highly toxic regions of the antibiotic ciprofloxacin (>80× minimum inhibitory concentration, MIC). Acquired antibiotic resistance was not observed for cells extracted from the reactor, so we explored the role of transient adaptive resistance by probing multidrug resistance (MDR) efflux pumps, ancient elements that are important for bacterial physiology and virulence. Accordingly, we constructed an efflux pump deficient mutant (∆mexF) and used resistance-nodulation-division (RND) efflux pump inhibitors (EPIs). While batch results showed the importance of RND efflux pumps for microbial survival, microfluidic studies indicated that these pumps were not necessary for survival in antibiotic gradients. Our work contributes to an emerging body of knowledge deciphering the effects of antibiotic spatial heterogeneity on microorganisms and highlights differences of microbial response in these systems versus well-mixed batch conditions.
- Subjects :
- Shewanella
medicine.drug_class
Microorganism
Antibiotics
Microbial Sensitivity Tests
Microbiology
Article
03 medical and health sciences
Minimum inhibitory concentration
Antibiotic resistance
Bacterial Proteins
Ciprofloxacin
Drug Resistance, Multiple, Bacterial
medicine
Shewanella oneidensis
Ecosystem
Ecology, Evolution, Behavior and Systematics
030304 developmental biology
0303 health sciences
Nitrates
biology
030306 microbiology
Chemotaxis
Membrane Transport Proteins
biology.organism_classification
Anti-Bacterial Agents
Multiple drug resistance
Biophysics
Efflux
Subjects
Details
- ISSN :
- 17517370 and 17517362
- Volume :
- 15
- Database :
- OpenAIRE
- Journal :
- The ISME Journal
- Accession number :
- edsair.doi.dedup.....2db0e5bd541f6b463f202e6a5ba54b37
- Full Text :
- https://doi.org/10.1038/s41396-021-00975-1