Back to Search Start Over

Polynomial argmin for recovery and approximation of multivariate discontinuous functions

Authors :
Henrion, Didier
Korda, Milan
Lasserre, Jean-Bernard
Department of Control Engineering, Faculty of Electrical Engineering [Prague]
Czech Technical University in Prague (CTU)
Equipe Polynomial OPtimization (LAAS-POP)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Programme DesCartes supported by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.
ANR-20-CE48-0014,NuSCAP,Sûreté numérique pour les preuves assistées par ordinateur(2020)
ANR-19-PI3A-0004,Future - PI3A
Publication Year :
2023

Abstract

We propose to approximate a (possibly discontinuous) multivariate function f (x) on a compact set by the partial minimizer arg miny p(x, y) of an appropriate polynomial p whose construction can be cast in a univariate sum of squares (SOS) framework, resulting in a highly structured convex semidefinite program. In a number of non-trivial cases (e.g. when f is a piecewise polynomial) we prove that the approximation is exact with a low-degree polynomial p. Our approach has three distinguishing features: (i) It is mesh-free and does not require the knowledge of the discontinuity locations. (ii) It is model-free in the sense that we only assume that the function to be approximated is available through samples (point evaluations). (iii) The size of the semidefinite program is independent of the ambient dimension and depends linearly on the number of samples. We also analyze the sample complexity of the approach, proving a generalization error bound in a probabilistic setting. This allows for a comparison with machine learning approaches.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....2daec7e6ff2032be8c8b1c4d6dc7982e