Back to Search Start Over

Origins of Enantioselectivity in Asymmetric Radical Additions to Octahedral Chiral-at-Rhodium Enolates: A Computational Study

Authors :
Kendall N. Houk
Xiaoqiang Huang
Eric Meggers
Shuming Chen
Source :
Journal of the American Chemical Society. 139:17902-17907
Publication Year :
2017
Publisher :
American Chemical Society (ACS), 2017.

Abstract

The origin of asymmetric induction in the additions of carbon- and nitrogen-centered radicals to octahedral centrochiral rhodium enolates has been investigated with density functional theory calculations. Computed free energies of activation reproduce the preference for the experimentally observed major enantiomer. Good levels of enantioselectivity are maintained upon replacement of the bulky tert-butyl substituents on the ligands with methyl groups. Distortion-interaction analysis indicates that for both carbon- and nitrogen-centered radicals, which have relatively early and late transition states, respectively, the difference in the distortion energies controls the enantioselectivity. In the enolate derived from the Λ-configured catalyst, the tert-butyl group that shields the si face of the substrate plays the most sterically significant steric role by directly hindering access to the enolate double bond. Exploration of the effect of the N substituent size and shape on the imidazole substrate shows that compared to N-Me, N-iPr and N-Ph variants, the N-o-tolyl variant of the rhodium enolate results in the most substantial improvement in stereodiscrimination, a finding that is in agreement with experimental ee values.

Details

ISSN :
15205126 and 00027863
Volume :
139
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....2d8ac388ff3414da4a93595f7f1a0e0c
Full Text :
https://doi.org/10.1021/jacs.7b08650