Back to Search
Start Over
Newton non-degenerate $\mu$-constant deformations admit simultaneous embedded resolutions
- Source :
- Compositio Math., Compositio Math., 2022, 158 (6), pp.1268-1297. ⟨10.1112/S0010437X22007576⟩
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- Let $\mathbb{C}^{n+1}_o$ denote the germ of $\mathbb{C}^{n+1}$ at the origin. Let $V$ be a hypersurface germ in $\mathbb{C}^{n+1}_o$ and $W$ a deformation of $V$ over $\mathbb{C}_{o}^{m}$. Under the hypothesis that $W$ is a Newton non-degenerate deformation, in this article we will prove that $W$ is a $\mu$-constant deformation if and only if $W$ admits a simultaneous embedded resolution. This result gives a lot of information about $W$, for example, the topological triviality of the family $W$ and the fact that the natural morphism $(W(\mathbb{C}_o)_m)_{red} \rightarrow \mathbb{C}_{o}$ is flat, where $W(\mathbb{C}_o)_m$ is the relative space of $m$-jets. On the way tothe proof of our main result, we give a complete answer to a question ofArnold on the monotonicity of Newton numbers in the case of convenientNewton polyhedra.<br />Comment: 31 pages, minor changes and corrections
- Subjects :
- Mathematics - Algebraic Geometry
Algebra and Number Theory
deformations of singularities
Singularities of algebraic varieties
14B05, 14B07, 14B25, 14E15, 14E25, 32S05, 32S10, 32S15
FOS: Mathematics
Newton number
simultaneous embedded resolutions
m-jetspaces
[MATH]Mathematics [math]
Algebraic Geometry (math.AG)
Milnor number
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Compositio Math., Compositio Math., 2022, 158 (6), pp.1268-1297. ⟨10.1112/S0010437X22007576⟩
- Accession number :
- edsair.doi.dedup.....2d601158b048178d9dc3742be71a3cfb
- Full Text :
- https://doi.org/10.1112/S0010437X22007576⟩