Back to Search Start Over

Approaching the upper bound of load capacity: Functional grading with interpenetrating polymer networks

Authors :
Mehrdad Negahban
Li Tan
Jean Marc Saiter
Zhong Chen
Nicolas Delpouve
Zheng Li
Wenlong Li
College of Engineering [Beijing]
Peking University [Beijing]
University of Nebraska [Lincoln]
University of Nebraska System
Sciences et Méthodes Séparatives (SMS)
Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Normandie Université (NU)
Groupe de physique des matériaux (GPM)
Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)
Collaboration
University of Nebraska–Lincoln
Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Materials & Design, Vol 137, Iss, Pp 152-163 (2018), Materials and Design, Materials and Design, Elsevier, 2018, 137, pp.152-163. ⟨10.1016/j.matdes.2017.10.019⟩, Materials & Design, Materials & Design, 2018, 137, pp.152-163. ⟨10.1016/j.matdes.2017.10.019⟩
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Functional grading is used to push the load capacity of parts to within the upper bound of what is theoretically possible. Using interpenetrating polymer networks (IPNs), a material system used to achieve grading during printing, the possibility of producing realistic grading of acrylate/epoxy IPNs is studied with the goal of increasing load capacity to within the limit of what is possible, and substantially beyond the load capacity possible with any uniform mixture of this IPN system. In the process, an upper bound of possible improvement is established for a plate with a circular hole in tensions, and the grading for this plate is adjusted to give an optimal load capacity near this upper bound. The optimal grading proposed is different from that shown in previous work due to the simultaneous consideration of both the effect of grading on elastic moduli and on the ultimate stress. A similar study was done for an L-shaped bracket indicating similar improvements over uniform brackets. Keywords: Functionally graded material, Interpenetrating polymer networks, Load capacity, Finite element method, Optimization

Details

ISSN :
02641275 and 02613069
Volume :
137
Database :
OpenAIRE
Journal :
Materials & Design
Accession number :
edsair.doi.dedup.....2d0a4ff06f26b4d6b3b90f098dd83f84
Full Text :
https://doi.org/10.1016/j.matdes.2017.10.019