Back to Search Start Over

Developing and quality testing of microsatellite loci for four species of Glossina

Authors :
Rafael Argiles-Herrero
Moise Kagbadouno
Winnie A. Okeyo
Mahamat Hissene Mahamat
Sophie Ravel
Modou Séré
William Shereni
Oliver Manangwa
Thierry De Meeûs
Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux trypanosomatides (UMR INTERTRYP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Université de Bordeaux (UB)
A&O (Apprentissage et Optimisation) (A&O)
Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)
CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Science des Données (SDD)
CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Algorithmes, Apprentissage et Calcul (AAC)
CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherche en Elevage pour le Developpement [N'Djamena, Tchad] (IRED)
Insect Pest Control Laboratory (IPC laboratory)
Food and Agriculture Organization of the United Nations [Rome, Italie] (FAO)-International Atomic Energy Agency [Vienna] (IAEA)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Science des Données (SDD)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Algorithmes, Apprentissage et Calcul (AAC)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Source :
Infection, Genetics and Evolution, Infection, Genetics and Evolution, Elsevier, 2020, 85, pp.104515-. ⟨10.1016/j.meegid.2020.104515⟩, Infection, Genetics and Evolution, 2020, 85, pp.104515-. ⟨10.1016/j.meegid.2020.104515⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Microsatellite loci still represent valuable resources for the study of the population biology of non-model organisms. Discovering or adapting new suitable microsatellite markers in species of interest still represents a useful task, especially so for non-model organisms as tsetse flies (genus Glossina), which remain a serious threat to the health of humans and animals in sub-Saharan Africa. In this paper, we present the development of new microsatellite loci for four species of Glossina: two from the Morsitans group, G. morsitans morsitans (Gmm) from Zimbabwe, G. pallidipes (Gpalli) from Tanzania; and the other two from the Palpalis group, G. fuscipes fuscipes (Gff) from Chad, and G. palpalis gambiensis (Gpg) from Guinea. We found frequent short allele dominance and null alleles. Stuttering could also be found and amended when possible. Cryptic species seemed to occur frequently in all taxa but Gff. This explains why it may be difficult finding ecumenical primers, which thus need adaptation according to each taxonomic and geographic context. Amplification problems occurred more often in published old markers, and Gmm and Gpg were the most affected (stronger heterozygote deficits). Trinucleotide markers displayed selection signature in some instances (Gmm). Combining old and new loci, for Gmm, eight loci can be safely used (with correction for null alleles); and five seem particularly promising; for Gpalli, only five to three loci worked well, depending on the clade, which means that the use of loci from other species (four morsitans loci seemed to work well), or other new primers will need to be used; for Gff, 14 loci behaved well, but with null alleles, seven of which worked very well; and for G. palpalis sl, only four loci, needing null allele and stuttering corrections seem to work well, and other loci from the literature are thus needed, including X-linked markers, five of which seem to work rather well (in females only), but new markers will probably be needed. Finally, the high proportion of X-linked markers (around 30%) was explained by the non-Y DNA quantity and chromosome structure of tsetse flies studied so far.

Details

Language :
English
ISSN :
15671348 and 15677257
Database :
OpenAIRE
Journal :
Infection, Genetics and Evolution, Infection, Genetics and Evolution, Elsevier, 2020, 85, pp.104515-. ⟨10.1016/j.meegid.2020.104515⟩, Infection, Genetics and Evolution, 2020, 85, pp.104515-. ⟨10.1016/j.meegid.2020.104515⟩
Accession number :
edsair.doi.dedup.....2ce5c8e0c1dc3cf8bf6c1c3355cccf26