Back to Search Start Over

Differentiability of minimal surfaces at the boundary

Authors :
Frank David Lesley
Source :
Pacific J. Math. 37, no. 1 (1971), 123-139
Publication Year :
1971
Publisher :
Mathematical Sciences Publishers, 1971.

Abstract

Let Γ be a Jordan curve in R and F(z) = (u(z)9 v(z), w(z)): {\z\ ^ 1} -» R be a solution of Plateau's problem for Γ, where z = x + iy are isothermal parameters. Then u,v,w are harmonic in {\z\ * for | z \ 1, where ω*(t) is a certain modulus of continuity. Once again ω* depends only on Γ.

Details

ISSN :
00308730
Volume :
37
Database :
OpenAIRE
Journal :
Pacific Journal of Mathematics
Accession number :
edsair.doi.dedup.....2ce49b2621584a18422af3a25844f907
Full Text :
https://doi.org/10.2140/pjm.1971.37.123