Back to Search
Start Over
Differentiability of minimal surfaces at the boundary
- Source :
- Pacific J. Math. 37, no. 1 (1971), 123-139
- Publication Year :
- 1971
- Publisher :
- Mathematical Sciences Publishers, 1971.
-
Abstract
- Let Γ be a Jordan curve in R and F(z) = (u(z)9 v(z), w(z)): {\z\ ^ 1} -» R be a solution of Plateau's problem for Γ, where z = x + iy are isothermal parameters. Then u,v,w are harmonic in {\z\ * for | z \ 1, where ω*(t) is a certain modulus of continuity. Once again ω* depends only on Γ.
Details
- ISSN :
- 00308730
- Volume :
- 37
- Database :
- OpenAIRE
- Journal :
- Pacific Journal of Mathematics
- Accession number :
- edsair.doi.dedup.....2ce49b2621584a18422af3a25844f907
- Full Text :
- https://doi.org/10.2140/pjm.1971.37.123