Back to Search
Start Over
Fractional series operators on discrete Hardy spaces
- Source :
- Acta Mathematica Hungarica. 168:202-216
- Publication Year :
- 2022
- Publisher :
- Springer Science and Business Media LLC, 2022.
-
Abstract
- We estudy the $H^{p}(\mathbb{Z})$ - $\ell^{q}(\mathbb{Z})$ boundedness of the fractional series operator $T_{\gamma}$ given by \[ (T_{\gamma}b)(j) = \sum_{i \neq \pm j} \frac{b(i)}{|i-j|^{\alpha}|i+j|^{\beta}}, \] where $0 \leq \gamma < 1$, $\alpha, \beta > 0$ and $\alpha + \beta = 1 -\gamma$. By means of a counter-example, we also show that the operator $T_{\gamma}$ is not bounded from $H^{p}(\mathbb{Z})$ into $H^{q}(\mathbb{Z})$.<br />Comment: 10 pages
Details
- ISSN :
- 15882632 and 02365294
- Volume :
- 168
- Database :
- OpenAIRE
- Journal :
- Acta Mathematica Hungarica
- Accession number :
- edsair.doi.dedup.....2ca0b527aada169c4472ad464d109180