Back to Search Start Over

Fractional series operators on discrete Hardy spaces

Authors :
Rocha, Pablo
Source :
Acta Mathematica Hungarica. 168:202-216
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

We estudy the $H^{p}(\mathbb{Z})$ - $\ell^{q}(\mathbb{Z})$ boundedness of the fractional series operator $T_{\gamma}$ given by \[ (T_{\gamma}b)(j) = \sum_{i \neq \pm j} \frac{b(i)}{|i-j|^{\alpha}|i+j|^{\beta}}, \] where $0 \leq \gamma < 1$, $\alpha, \beta > 0$ and $\alpha + \beta = 1 -\gamma$. By means of a counter-example, we also show that the operator $T_{\gamma}$ is not bounded from $H^{p}(\mathbb{Z})$ into $H^{q}(\mathbb{Z})$.<br />Comment: 10 pages

Details

ISSN :
15882632 and 02365294
Volume :
168
Database :
OpenAIRE
Journal :
Acta Mathematica Hungarica
Accession number :
edsair.doi.dedup.....2ca0b527aada169c4472ad464d109180