Back to Search Start Over

Spin properties of dense near-surface ensembles of nitrogen-vacancy centers in diamond

Authors :
David Simpson
Liam T. Hall
Scott E. Lillie
Jean-Philippe Tetienne
Tokuyuki Teraji
Nikolai Dontschuk
Alastair Stacey
Julia M. McCoey
Lloyd C. L. Hollenberg
David A. Broadway
R. W. de Gille
Source :
Physical Review B. 97
Publication Year :
2018
Publisher :
American Physical Society (APS), 2018.

Abstract

We present a study of the spin properties of dense layers of near-surface nitrogen-vacancy (NV) centres in diamond created by nitrogen ion implantation. The optically detected magnetic resonance contrast and linewidth, spin coherence time, and spin relaxation time, are measured as a function of implantation energy, dose, annealing temperature and surface treatment. To track the presence of damage and surface-related spin defects, we perform in situ electron spin resonance spectroscopy through both double electron-electron resonance and cross-relaxation spectroscopy on the NV centres. We find that, for the energy ($4-30$~keV) and dose ($5\times10^{11}-10^{13}$~ions/cm$^2$) ranges considered, the NV spin properties are mainly governed by the dose via residual implantation-induced paramagnetic defects, but that the resulting magnetic sensitivity is essentially independent of both dose and energy. We then show that the magnetic sensitivity is significantly improved by high-temperature annealing at $\geq1100^\circ$C. Moreover, the spin properties are not significantly affected by oxygen annealing, apart from the spin relaxation time, which is dramatically decreased. Finally, the average NV depth is determined by nuclear magnetic resonance measurements, giving $\approx10$-17~nm at 4-6 keV implantation energy. This study sheds light on the optimal conditions to create dense layers of near-surface NV centres for high-sensitivity sensing and imaging applications.<br />Comment: 12 pages, 7 figures

Details

ISSN :
24699969 and 24699950
Volume :
97
Database :
OpenAIRE
Journal :
Physical Review B
Accession number :
edsair.doi.dedup.....2c8590caf0dc22691bc0acd3de655557