Back to Search
Start Over
Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties
- Source :
- Risch, A C, Zimmerman, S, Moser, B, Schuetz, M, Hagedorn, F, Firn, J, Fay, P, Adler, P, Biederman, L, Blair, J, Borer, E T, Broadbent, A, Brown, C, Cadotte, M, Caldeira, M C, Davies, K, di Virgilio, A, Eisenhauer, N, Eskelinen, A, Knops, J M H, MacDougall, A S, McCulley, R L, Melbourne, B, Moore, J L, Power, S A, Prober, S M, Seabloom, E W, Siebert, J, Silveira, M L, Speziale, K L, Stevens, C J, Tognetti, P M, Virtanen, R, Yahdjian, L & Ochoa-Hueso, R 2020, ' Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties ', Global Change Biology, vol. 26, no. 12, pp. 7173-7185 . https://doi.org/10.1111/gcb.15308
- Publication Year :
- 2020
-
Abstract
- Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory‐based) and realized (field‐based) soil net Nmin. Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin. However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin, in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site‐specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context‐dependent knowledge for grassland management worldwide.
- Subjects :
- 0106 biological sciences
010504 meteorology & atmospheric sciences
Nitrogen
chemistry.chemical_element
precipitation
global grasslands
010603 evolutionary biology
01 natural sciences
complex mixtures
Grassland
nitrogen
Soil
Nutrient
Human fertilization
potential and realized soil net nitrogen mineralization
grazers
Animals
Humans
Environmental Chemistry
Soil properties
Herbivory
phosphorus
Nitrogen cycle
Ecosystem
0105 earth and related environmental sciences
General Environmental Science
Global and Planetary Change
Herbivore
geography
geography.geographical_feature_category
Ecology
potassium
temperature
Mineralization (soil science)
NutNet
Agronomy
chemistry
Fertilization
Environmental science
anthropogenic change
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Risch, A C, Zimmerman, S, Moser, B, Schuetz, M, Hagedorn, F, Firn, J, Fay, P, Adler, P, Biederman, L, Blair, J, Borer, E T, Broadbent, A, Brown, C, Cadotte, M, Caldeira, M C, Davies, K, di Virgilio, A, Eisenhauer, N, Eskelinen, A, Knops, J M H, MacDougall, A S, McCulley, R L, Melbourne, B, Moore, J L, Power, S A, Prober, S M, Seabloom, E W, Siebert, J, Silveira, M L, Speziale, K L, Stevens, C J, Tognetti, P M, Virtanen, R, Yahdjian, L & Ochoa-Hueso, R 2020, ' Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties ', Global Change Biology, vol. 26, no. 12, pp. 7173-7185 . https://doi.org/10.1111/gcb.15308
- Accession number :
- edsair.doi.dedup.....2c526303c110597d00701f5dbc17d5df
- Full Text :
- https://doi.org/10.1111/gcb.15308