Back to Search Start Over

Cumulative Inductive Types in Coq

Authors :
Timany, Amin
Sozeau, Matthieu
Distributed Systems and Computer Networks (DistriNet)
Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven)
Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243))
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Design, study and implementation of languages for proofs and programs (PI.R2)
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243))
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Wagner, Michael
Source :
FSCD 2018-3rd International Conference on Formal Structures for Computation and Deduction, FSCD 2018-3rd International Conference on Formal Structures for Computation and Deduction, Jul 2018, Oxford, United Kingdom. ⟨10.4230/LIPIcs.FSCD.2018.29⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

In order to avoid well-known paradoxes associated with self-referential definitions, higher-order dependent type theories stratify the theory using a countably infinite hierarchy of universes (also known as sorts), Type{0} : Type{1} : · · · . Such type systems are called cumulative if for any type A we have that A : Type{i} implies A : Type{i+1}. The Predicative Calculus of Inductive Constructions (pCIC) which forms the basis of the Coq proof assistant, is one such system. In this paper we present the Predicative Calculus of Cumulative Inductive Constructions (pCuIC) which extends the cumulativity relation to inductive types. We discuss cumulative inductive types as present in Coq 8.7 and their application to formalization and definitional translations. ispartof: LIPIcs : Leibniz International Proceedings in Informatics ispartof: International Conference on Formal Structures for Computation and Deduction (FSCD) location:Oxford, UK date:9 Jul - 12 Jul 2018 status: accepted

Details

Language :
English
Database :
OpenAIRE
Journal :
FSCD 2018-3rd International Conference on Formal Structures for Computation and Deduction, FSCD 2018-3rd International Conference on Formal Structures for Computation and Deduction, Jul 2018, Oxford, United Kingdom. ⟨10.4230/LIPIcs.FSCD.2018.29⟩
Accession number :
edsair.doi.dedup.....2c2a49c04654b0f6f3d0bba9aa41e543