Back to Search Start Over

From Platonic Templates to Archimedean Solids: Successive Construction of Nanoscopic {V16As8}, {V16As10}, {V20As8}, and {V24As8} Polyoxovanadate Cages

Authors :
Wolfgang Schmitt
Lei Zhang
Source :
Journal of the American Chemical Society. 133:11240-11248
Publication Year :
2011
Publisher :
American Chemical Society (ACS), 2011.

Abstract

Supramolecular coordination cages provide unique restricted inner cavities that can be exploited for molecular recognition purposes and catalysis. Their syntheses often involve complex self-organization processes and rely on the identification of preorganized, kinetically stable building units that provide ligand-accessible coordination sites. Here we report a highly effective protocol for the successive buildup of symmetrical nanoscopic polyoxometalate (POM) cages. Our methodology takes advantage of a supramolecular templating effect and utilizes the structure-directing influence of octahedral {X(x)(H(2)O)(6-x)} (X = Br(-), Cl(-); x = 2, 4, 6) assemblies that reside inside the hollow cluster shells and determine the arrangement of di- and tetranuclear vanadate units. The approach allows the preparation of a series of high-nuclearity POM cages that are characterized by {V(16)As(8)}, {V(16)As(10)}, {V(20)As(8)}, and {V(24)As(8)} core structures. In the latter cluster cage, the vanadium centers adopt a truncated octahedral topology. The formation of this Archimedean body is the direct result of the assembly of six square {V(4)O(8)} units that cap the vertices of the encapsulated Platonic {Cl(6)} octahedron. To the best of our knowledge, this {V(24)As(8)} cage is the largest hybrid vanadate cluster reported to date.

Details

ISSN :
15205126 and 00027863
Volume :
133
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....2c26a598f7908a566370d65ad07c1254
Full Text :
https://doi.org/10.1021/ja2024004