Back to Search Start Over

Total Bee Dependence on One Flower Species Despite Available Congeners of Similar Floral Shape

Authors :
Montserrat Vilà
Juan P. González-Varo
F. Javier Ortiz-Sánchez
Source :
PLoS ONE, Digital.CSIC. Repositorio Institucional del CSIC, instname, PLoS ONE, Vol 11, Iss 9, p e0163122 (2016)
Publication Year :
2016
Publisher :
Public Library of Science, 2016.

Abstract

Extreme specialization is a common phenomenon in antagonistic biotic interactions but it is quite rare in mutualistic ones. Indeed, bee specialization on a single flower species (monolecty) is a questioned fact. Here, we provide multiple lines of evidence on true monolecty in a solitary bee (Flavipanurgus venustus, Andrenidae), which is consistent across space (18 sites in SW Iberian Peninsula) and time (three years) despite the presence of closely related congeneric plant species whose flowers are morphologically similar. The host flower (Cistus crispus, Cistaceae) is in turn a supergeneralist, visited by at least 85 insect species. We uncover ultraviolet light reflectance as a distinctive visual cue of the host flower, which can be a key mechanism because bee specialization has an innate basis to recognize specific signals. Moreover, we hypothesized that a total dependence on an ephemeral resource (i.e. one flower species) must lead to spatiotemporal matching with it. Accordingly, we prove that the bee's flight phenology is synchronized with the blooming period of the host flower, and that the densities of bee populations mirror the local densities of the host flower. This case supports the `predictable plethora' hypothesis, that is, that host-specialization in bees is fostered by plant species providing predictably abundant floral resources. Our findings, along with available phylogenetic information on the genus Cistus, suggest the importance of historical processes and cognitive constraints as drivers of specialization in bee-plant interactions.

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
9
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....2c24b0e45c0b2701ca4cc6fe3116b493