Back to Search Start Over

A quantum memory for orbital angular momentum photonic qubits

Authors :
Julien Laurat
Lambert Giner
A. Nicolas
Lucile Veissier
Dominik Maxein
Elisabeth Giacobino
Laurat, Julien
Laboratoire Kastler Brossel (LKB (Jussieu))
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nature Photonics
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

Among the optical degrees of freedom, the orbital angular momentum of light1 provides unique properties2, including mechanical torque action, which has applications for light manipulation3, enhanced sensitivity in imaging techniques4 and potential high-density information coding for optical communication systems5. Recent years have also seen a tremendous interest in exploiting orbital angular momentum at the single-photon level in quantum information technologies6,7. In pursuing this endeavour, we demonstrate here the implementation of a quantum memory8 for quantum bits encoded in this optical degree of freedom. We generate various qubits with computer-controlled holograms, store and retrieve them on demand using a dynamic electromagnetically induced transparency protocol. We further analyse the retrieved states by quantum tomography and thereby demonstrate fidelities exceeding the classical benchmark, confirming the quantum functioning of our storage process. Our results provide an essential capability for future networks9 exploring the promises of orbital angular momentum of photons for quantum information applications. A quantum memory for orbital angular momentum qubits is demonstrated in the single-photon regime. It is based on cold cesium atoms and the dynamic electromagnetically induced transparency protocol. Retrieved states were analysed by quantum tomography, and fidelities after readout of over 92% were obtained, confirming the quantum functionality of the storage process.

Details

Language :
English
Database :
OpenAIRE
Journal :
Nature Photonics
Accession number :
edsair.doi.dedup.....2bdb2668a12e315c5b0d2f7d6c904e71