Back to Search Start Over

Tensor approximation of the self-diffusion matrix of tagged particle processes

Authors :
Jad Dabaghi
Virginie Ehrlacher
Christoph Strössner
Ecole Supérieure d'Ingénieurs Léonard de Vinci (ESILV)
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS)
École des Ponts ParisTech (ENPC)
MATHematics for MatERIALS (MATHERIALS)
École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
This work was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement number 614492 and under the European Union’s Horizon 2020 Research and Innovation Programme, ERC Grant Agreement number 810367, project EMC2. The work was initiated during the CEMRACS 2021 summer school at CIRM, Luminy, Marseille. The authors also acknowledge funding by the ANR project COMODO (ANR-19-CE46-0002), the Center on Energy and Climate Change (E4C) and the I-Site FUTURE.
ANR-19-CE46-0002,COMODO,Systèmes de diffusion croisée sur des domaines en mouvement(2019)
European Project: 810367,EMC2(2019)
Publication Year :
2022

Abstract

The objective of this paper is to investigate a new numerical method for the approximation of the self-diffusion matrix of a tagged particle process defined on a grid. While standard numerical methods make use of long-time averages of empirical means of deviations of some stochastic processes, and are thus subject to statistical noise, we propose here a tensor method in order to compute an approximation of the solution of a high-dimensional quadratic optimization problem, which enables to obtain a numerical approximation of the self-diffusion matrix. The tensor method we use here relies on an iterative scheme which builds low-rank approximations of the quantity of interest and on a carefully tuned variance reduction method so as to evaluate the various terms arising in the functional to minimize. In particular, we numerically observe here that it is much less subject to statistical noise than classical approaches.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....2bd2e3608d0755bc5cf0f834ff29bb1b