Back to Search
Start Over
Ectopic Overexpression of PPARγ2 in the Heart Determines Differences in Hypertrophic Cardiomyopathy After Treatment With Different Thiazolidinediones in a Mouse Model of Diabetes
- Source :
- Frontiers in Pharmacology, Frontiers in Pharmacology, Vol 12 (2021)
- Publication Year :
- 2021
- Publisher :
- Frontiers Media SA, 2021.
-
Abstract
- The clinical controversy of rosiglitazone as a hypoglycemic agent is potentially associated with heart failure, mainly due to its potent activation of peroxisome proliferator-activated receptor γ (PPARγ). PPARγ partial agonists showed superior pharmacological profiles to rosiglitazone. This study compared differences in cardiac morphology and function of the PPARγ partial agonist CMHX008 with rosiglitazone. High-fat diet (HFD) induced obese mice, ob/ob mice and cardiomyocytes overexpressing PPARγ2 were treated with CMHX008 or rosiglitazone. Heart function, myocardial morphology, and hypertrophy-related gene expression were examined. Clinical information from patients with type 2 diabetes mellitus (T2DM) who had taken rosiglitazone and undergone Doppler echocardiography was collected. HFD and ob/ob mice significantly developed cardiac contractile dysfunction, with upregulated PPARγ2 protein levels in heart tissues. Cardiomyocytes of HFD and ob/ob mice were disorderly arranged, the cell areas expanded, and collagen accumulated. In vitro cardiomyocytes overexpressing PPARγ2 displayed obvious structural abnormalities and high mRNA levels of ANP and BNP, critical cardiac hypertrophy-related genes. HFD-fed mice treated with rosiglitazone or CMHX008 had significantly improved cardiac function, but rosiglitazone induced higher expression of ANP and βMHC and hypertrophic cardiomyopathy, while CMHX008 did not. Patients with T2DM taking rosiglitazone exhibited increased thickness of the posterior wall and the ventricular septum, suggesting cardiac hypertrophy. Our findings show that diabetic cardiomyopathy was associated with ectopic overexpression of PPARγ2. The full agonist rosiglitazone prevents cardiac dysfunction at the expense of compensatory hypertrophy, while the partial agonist CMHX008 shared a comparable protective effect without altering the structure of cardiomyocytes.
- Subjects :
- 0301 basic medicine
Cardiac function curve
Agonist
medicine.medical_specialty
PPARγ
medicine.drug_class
030209 endocrinology & metabolism
RM1-950
Partial agonist
rosiglitazone
03 medical and health sciences
0302 clinical medicine
Diabetic cardiomyopathy
Internal medicine
medicine
diabetic cardiomyopathy
Pharmacology (medical)
Receptor
Original Research
Pharmacology
business.industry
cardiac hypertrophy
Hypertrophic cardiomyopathy
medicine.disease
insulin sensitizers
030104 developmental biology
Endocrinology
Heart failure
Therapeutics. Pharmacology
business
Rosiglitazone
medicine.drug
Subjects
Details
- Language :
- English
- ISSN :
- 16639812
- Volume :
- 12
- Database :
- OpenAIRE
- Journal :
- Frontiers in Pharmacology
- Accession number :
- edsair.doi.dedup.....2bcd45aa7569bab45307849140eaad9f
- Full Text :
- https://doi.org/10.3389/fphar.2021.683156