Back to Search Start Over

A penalized empirical likelihood method in high dimensions

Authors :
Subhadeep Mukhopadhyay
Soumendra N. Lahiri
Source :
Ann. Statist. 40, no. 5 (2012), 2511-2540
Publication Year :
2012
Publisher :
The Institute of Mathematical Statistics, 2012.

Abstract

This paper formulates a penalized empirical likelihood (PEL) method for inference on the population mean when the dimension of the observations may grow faster than the sample size. Asymptotic distributions of the PEL ratio statistic is derived under different component-wise dependence structures of the observations, namely, (i) non-Ergodic, (ii) long-range dependence and (iii) short-range dependence. It follows that the limit distribution of the proposed PEL ratio statistic can vary widely depending on the correlation structure, and it is typically different from the usual chi-squared limit of the empirical likelihood ratio statistic in the fixed and finite dimensional case. A unified subsampling based calibration is proposed, and its validity is established in all three cases, (i)-(iii). Finite sample properties of the method are investigated through a simulation study.<br />Published in at http://dx.doi.org/10.1214/12-AOS1040 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org)

Details

Language :
English
Database :
OpenAIRE
Journal :
Ann. Statist. 40, no. 5 (2012), 2511-2540
Accession number :
edsair.doi.dedup.....2bcc56929412bea54be6f800eb75cb7d