Back to Search Start Over

Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels

Authors :
Robin, P.
Emmerich, T.
Ismail, A.
Niguès, A.
You, Y.
Nam, G.-H.
Keerthi, A.
Siria, A.
Geim, A. K.
Radha, B.
Bocquet, L.
Micromegas : Nano-Fluidique
Laboratoire de physique de l'ENS - ENS Paris (LPENS)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
University of Manchester [Manchester]
ANR-17-CE09-0046,NEPTUNE,Transport hors equilibre de fluides aux échelles nanométriques(2017)
European Project: 785911,Shadoks
European Project: 899528 ,ITS-THIN
European Project: 852674 ,AngstroCAP
Source :
Science, Science, 2023, 379 (6628), pp.161-167. ⟨10.1126/science.adc9931⟩, Robin, P, Emmerich, T, Ismail, A, Niguès, A, You, Y, Nam, G H, Keerthi, A, Siria, A, Geim, A K, Radha, B & Bocquet, L 2023, ' Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels ', Science, vol. 379, no. 6628, pp. 161-167 . https://doi.org/10.1126/science.adc9931
Publication Year :
2022

Abstract

International audience; Fine-tuned ion transport across nanoscale pores is key to many biological processes, including neurotransmission. Recent advances have enabled the confinement of water and ions to two dimensions, unveiling transport properties inaccessible at larger scales and triggering hopes of reproducing the ionic machinery of biological systems. Here we report experiments demonstrating the emergence of memory in the transport of aqueous electrolytes across (sub)nanoscale channels. We unveil two types of nanofluidic memristors depending on channel material and confinement, with memory ranging from minutes to hours. We explain how large time scales could emerge from interfacial processes such as ionic self-assembly or surface adsorption. Such behavior allowed us to implement Hebbian learning with nanofluidic systems. This result lays the foundation for biomimetic computations on aqueous electrolytic chips.

Details

Language :
English
ISSN :
00368075 and 10959203
Database :
OpenAIRE
Journal :
Science, Science, 2023, 379 (6628), pp.161-167. ⟨10.1126/science.adc9931⟩, Robin, P, Emmerich, T, Ismail, A, Niguès, A, You, Y, Nam, G H, Keerthi, A, Siria, A, Geim, A K, Radha, B & Bocquet, L 2023, ' Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels ', Science, vol. 379, no. 6628, pp. 161-167 . https://doi.org/10.1126/science.adc9931
Accession number :
edsair.doi.dedup.....2b82c93529342aefd12e448c9c033b34