Back to Search Start Over

Finding Shortest Paths Between Graph Colourings

Authors :
Stefan Kratsch
Matthew Johnson
Daniël Paulusma
Viresh Patel
Dieter Kratsch
Laboratoire d'Informatique Théorique et Appliquée (LITA)
Université de Lorraine (UL)
Source :
Algorithmica, Algorithmica, Springer Verlag, 2016, 75 (2), pp.295-321. ⟨10.1007/s00453-015-0009-7⟩, Algorithmica, 2016, Vol.75(2), pp.295-321 [Peer Reviewed Journal]
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

The $$k$$k-colouring reconfiguration problem asks whether, for a given graph $$G$$G, two proper $$k$$k-colourings $$\alpha $$ź and $$\beta $$β of $$G$$G, and a positive integer $$\ell $$l, there exists a sequence of at most $$\ell +1$$l+1 proper $$k$$k-colourings of $$G$$G which starts with $$\alpha $$ź and ends with $$\beta $$β and where successive colourings in the sequence differ on exactly one vertex of $$G$$G. We give a complete picture of the parameterized complexity of the $$k$$k-colouring reconfiguration problem for each fixed $$k$$k when parameterized by $$\ell $$l. First we show that the $$k$$k-colouring reconfiguration problem is polynomial-time solvable for $$k=3$$k=3, settling an open problem of Cereceda, van den Heuvel and Johnson. Then, for all $$k \ge 4$$kź4, we show that the $$k$$k-colouring reconfiguration problem, when parameterized by $$\ell $$l, is fixed-parameter tractable (addressing a question of Mouawad, Nishimura, Raman, Simjour and Suzuki) but that it has no polynomial kernel unless the polynomial hierarchy collapses.

Details

Language :
English
ISSN :
01784617 and 14320541
Database :
OpenAIRE
Journal :
Algorithmica, Algorithmica, Springer Verlag, 2016, 75 (2), pp.295-321. ⟨10.1007/s00453-015-0009-7⟩, Algorithmica, 2016, Vol.75(2), pp.295-321 [Peer Reviewed Journal]
Accession number :
edsair.doi.dedup.....2b631819cfffaccc78016e082d839847
Full Text :
https://doi.org/10.1007/s00453-015-0009-7⟩