Back to Search Start Over

Augmented Resistive Immersed Surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases

Authors :
Jean-Frédéric Gerbeau
Alexandre This
Miguel Angel Fernández
Ludovic Boilevin-Kayl
MedisysResearch Lab (Medisys)
Philips Research
COmputational Mathematics for bio-MEDIcal Applications (COMMEDIA)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Inria Siège
Institut National de Recherche en Informatique et en Automatique (Inria)
The research has been partially supported by a CIFRE Ph.D convention established between INRIA Paris and Philips Research, France. The research leading to these results has also been partially supported by the project MIVANA. MIVANA is a collaborative project for the development of new technologies for mitral valve repair. It is led by the start-up company Kephalios, with the participation of the start-up company Epygon, and it has received funds from the French government, in the context of the program 'Investissement d’Avenir'.
Numerical simulation of biological flows (REO)
Sorbonne Université (SU)-Inria de Paris
Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Source :
International Journal for Numerical Methods in Biomedical Engineering, International Journal for Numerical Methods in Biomedical Engineering, John Wiley and Sons, 2020, 36 (3), pp.e3223. ⟨10.1002/cnm.3223⟩, International Journal for Numerical Methods in Biomedical Engineering, John Wiley and Sons, In press, ⟨10.1002/cnm.3223⟩, International Journal for Numerical Methods in Biomedical Engineering, 2020, 36 (3), pp.e3223. ⟨10.1002/cnm.3223⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

In order to reduce the complexity of heart hemodynamics simulations, uncoupling approaches are often considered for the modeling of the immersed valves as an alternative to complex fluid-structure interaction (FSI) models. A possible shortcoming of these simplified approaches is the difficulty to correctly capture the pressure dynamics during the isovolumetric phases. In this work, we propose an enhanced resistive immersed surfaces (RIS) model of cardiac valves, which overcomes this issue. The benefits of the model are investigated and tested in blood flow simulations of the left heart where the physiological behavior of the intracavity pressure during the isovolumetric phases is recovered without using fully coupled fluid-structure models and without important alteration of the associated velocity field.

Details

Language :
English
ISSN :
20407939 and 20407947
Database :
OpenAIRE
Journal :
International Journal for Numerical Methods in Biomedical Engineering, International Journal for Numerical Methods in Biomedical Engineering, John Wiley and Sons, 2020, 36 (3), pp.e3223. ⟨10.1002/cnm.3223⟩, International Journal for Numerical Methods in Biomedical Engineering, John Wiley and Sons, In press, ⟨10.1002/cnm.3223⟩, International Journal for Numerical Methods in Biomedical Engineering, 2020, 36 (3), pp.e3223. ⟨10.1002/cnm.3223⟩
Accession number :
edsair.doi.dedup.....2b5b7383503f409fb4f507ecf521b65a