Back to Search Start Over

Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism

Authors :
Cassandra S.C. Cadman
Peter E. Toorop
Henk W. M. Hilhorst
William E. Finch-Savage
Source :
The Plant Journal. 46:805-822
Publication Year :
2006
Publisher :
Wiley, 2006.

Abstract

Physiologically dormant seeds, like those of Arabidopsis, will cycle through dormant states as seasons change until the environment is favourable for seedling establishment. This phenomenon is widespread in the plant kingdom, but has not been studied at the molecular level. Full-genome microarrays were used for a global transcript analysis of Arabidopsis thaliana (accession Cvi) seeds in a range of dormant and dry after-ripened states during cycling. Principal component analysis of the expression patterns observed showed that they differed in newly imbibed primary dormant seeds, as commonly used in experimental studies, compared with those in the maintained primary and secondary dormant states that exist during cycling. Dormant and after-ripened seeds appear to have equally active although distinct gene expression programmes, dormant seeds having greatly reduced gene expression associated with protein synthesis, potentially controlling the completion of germination. A core set of 442 genes were identified that had higher expression in all dormant states compared with after-ripened states. Abscisic acid (ABA) responsive elements were significantly over-represented in this set of genes the expression of which was enhanced when multiple copies of the elements were present. ABA regulation of dormancy was further supported by expression patterns of key genes in ABA synthesis/catabolism, and dormancy loss in the presence of fluridone. The data support an ABA-gibberelic acid hormone balance mechanism controlling cycling through dormant states that depends on synthetic and catabolic pathways of both hormones. Many of the most highly expressed genes in dormant states were stress-related even in the absence of abiotic stress, indicating that ABA, stress and dormancy responses overlap significantly at the transcriptome level.

Details

ISSN :
1365313X and 09607412
Volume :
46
Database :
OpenAIRE
Journal :
The Plant Journal
Accession number :
edsair.doi.dedup.....2ac2222c796a1c8de431db807c28c8ed
Full Text :
https://doi.org/10.1111/j.1365-313x.2006.02738.x