Back to Search
Start Over
Stabilization of p18 by deubiquitylase CYLD is pivotal for cell cycle progression and viral replication
- Source :
- npj Precision Oncology, Vol 5, Iss 1, Pp 1-14 (2021), NPJ Precision Oncology
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- p18 is a key negative regulator of cell cycle progression and mediates cell cycle arrest at the G1/S phase. Ubiquitination is the prime mechanism in regulating p18 protein abundance. However, so far no post- translational regulator, especially DUBs, has been identified to regulate the protein stability of p18. In this paper, we identified CYLD as a deubiquitinase of p18, which binds to and removes the K48-linked polyubiquitylation chains conjugated onto p18, thus stabilizing the p18 protein. Loss of CYLD causes the degradation of p18 and induces the G1/S transition. Epstein–Barr virus (EBV), is the human oncovirus etiologically linked to nasopharyngeal carcinoma (NPC). Here we found that EBV drives a replication passive environment by deregulating the CYLD-p18 axis. Functionally, CYLD inhibits cell proliferation and tumorigenesis through p18 in vivo. Restoring CYLD prevents EBV induced viral replication and tumor growth. Collectively, our results identify CYLD directly stabilizes p18 to regulate the cellular G1/S transition. The reconstitution of CYLD-p18 axis could be a promising approach for EBV-positive cancer therapy.
- Subjects :
- 0301 basic medicine
Cancer Research
endocrine system
Cell cycle checkpoint
Ubiquitylation
endocrine system diseases
Regulator
medicine.disease_cause
Article
Deubiquitinating enzyme
03 medical and health sciences
0302 clinical medicine
Ubiquitin
medicine
Head and neck cancer
Oncogenesis
RC254-282
biology
Cell growth
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
Cell biology
030104 developmental biology
Oncology
Viral replication
030220 oncology & carcinogenesis
biology.protein
Carcinogenesis
Oncovirus
Subjects
Details
- Language :
- English
- Volume :
- 5
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- npj Precision Oncology
- Accession number :
- edsair.doi.dedup.....2a9e1a2ccc25e0c6b69bff23d1ed14cf