Back to Search Start Over

High-contrast imager for complex aperture telescopes (HiCAT): 1. testbed design

Authors :
Matthew Sheckells
Tyler D. Groff
Elodie Choquet
Alexis Carlotti
Marshall D. Perrin
Dimitri Mawet
Rémi Soummer
J. Kent Wallace
N. Jeremy Kasdin
Mamadou N'Diaye
Stuart Shaklan
Erin Elliot
Bruce Macintosh
Laurent Pueyo
Joseph Louis LAGRANGE (LAGRANGE)
Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur
Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)
Observatoire de la Côte d'Azur (OCA)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Shaklan, Stuart
Source :
SPIE Optical Engineering + Applications, SPIE Optical Engineering + Applications, Aug 2013, San Diego, United States. pp.88641K, ⟨10.1117/12.2023718⟩
Publication Year :
2013
Publisher :
SPIE, 2013.

Abstract

Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these telescope designs have a complex geometry (central obstruction, support structures, segmentation) that makes high-contrast imaging more challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present our approach for the testbed optical design, which defines the surface requirements for each mirror to minimize the amplitude-induced errors from the propagation of out-of-pupil surfaces. Our approach guarantees that the testbed will not be limited by these Fresnel propagation effects, but only by the aperture geometry. This approach involves iterations between classical ray-tracing optical design optimization, and end-to-end Fresnel propagation with wavefront control (e.g. Electric Field Conjugation / Stroke Minimization). The construction of the testbed is planned to start in late Fall 2013.<br />Proc. of the SPIE 8864, 10 pages, 3 figures, Techniques and Instrumentation for Detection of Exoplanets VI

Details

ISSN :
0277786X
Database :
OpenAIRE
Journal :
SPIE Proceedings
Accession number :
edsair.doi.dedup.....2a875b0409b2b69aa137f634e7a83289