Back to Search
Start Over
Catheter‐based renal denervation in Chinese patients with chronic kidney disease and uncontrolled hypertension
- Source :
- The Journal of Clinical Hypertension. 25:71-77
- Publication Year :
- 2022
- Publisher :
- Wiley, 2022.
-
Abstract
- Sympathetic activation contributes to the progression of hypertension and chronic kidney disease (CKD). Ablation of renal sympathetic nerves lowers blood pressure (BP) and preserves renal function in patients with CKD and uncontrolled hypertension by reducing sympathetic nerve activity. But whether this approach is safe and effective in Chinese patients with CKD is unknown. We performed an observational study of eight patients with CKD stages from 1 to 5, office BP ≥150/90 mmHg, while on at least three antihypertensive drug classes including a diuretic, and diagnosis confirmed by 24 h ambulatory systolic BP measurement ≥135 mmHg. All patients underwent catheter-based renal denervation (RDN) using a newly designed RDN System (Golden Leaf Medtech, Shanghai, China). For up to 6 months after RDN, BP was monitored and renal function was assessed. Mean baseline office BP was 165.0 ± 13.9/97.8 ± 5.5 mmHg, despite treatment with three antihypertensive drugs. Six months after RDN, office BP was reduced by 22.1 ± 12.0 (P = .002)/11.0 ± 8.8 mmHg (P = .012) and average 24 h ambulatory BP by 18 ± 13.7 (P = .01)/9.3 ± 7.7 mmHg (P = .016). After RDN, heart rate and estimated glomerular filtration rate (GFR) had no significant change compared with before RDN. In Chinese patients with CKD, our observational pilot study found that treating hypertension with RDN lowers BP while not affecting renal function. Brief Abstract: We performed RDN in eight Chinese patients with hypertension and CKD. The results showed that RDN lowered blood pressure of these patients significantly and eGFR was stable. No obvious adverse event was observed.
Details
- ISSN :
- 17517176 and 15246175
- Volume :
- 25
- Database :
- OpenAIRE
- Journal :
- The Journal of Clinical Hypertension
- Accession number :
- edsair.doi.dedup.....2a3fee8ca74c4e3040bbf5ac2ba763a4