Back to Search
Start Over
Shock-induced metallic iron nanoparticles in olivine-rich Martian meteorites
- Source :
- Earth and Planetary Science Letters, Earth and Planetary Science Letters, Elsevier, 2007, 262 (1-2), pp.37-49. ⟨10.1016/j.epsl.2007.07.002⟩, Earth and Planetary Science Letters, 2007, 262 (1-2), pp.37-49. ⟨10.1016/j.epsl.2007.07.002⟩
-
Abstract
- Magnetic anomalies observed by the Mars Global Surveyor mission are attributed to crustal remanence. SNC (Shergotty-Nakhla-Chassigny) meteorites are likely samples of the Martian crust and are amenable to mineralogical and magnetic measurements essential to the understanding of the origin of magnetic anomalies. The recently discovered chassignite NWA 2737 and lherzolitic shergottite NWA 1950 display unusual magnetic characteristics that argue for a different magnetic carrier than the oxides and sulfides previously invoked in SNC meteorites. NWA 2737, the second member of the chassignite group, is a dunite with unusually dark-brown olivines and large magnetic susceptibility while Chassigny contains green olivines and is nearly a pure paramagnet. Dark olivines are also found in NWA 1950, a lherzolitic shergottite, which has singular magnetic properties when compared with other shergottites. The dark olivine color is due to the presence of Fe and FeNi metal nanoparticles, identified both by TEM and by magnetic measurements. Their size distribution encompasses the superparamagnetic to single domain transition at 30 K (10 nm range) and explains the magnetic properties of the bulk rocks. The formation of these nanoparticles is attributed to heating during the shock events that affected NWA 2737 and NWA 1950. The production of metal particles by shock-induced reduction of olivine has been invoked on surfaces deprived of atmosphere but never observed on Earth or Mars. Therefore, metal formed by shock in the heavily cratered Noachian crust is a possible carrier for crustal magnetic remanence. Widespread surface formation of metal nanoparticles could provide the precursor for the oxidized particles (goethite, hematite) observed in the Martian soils. (c) 2007 Elsevier B.V All rights reserved.
- Subjects :
- 010504 meteorology & atmospheric sciences
Geochemistry
Mineralogy
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Mars
Chassigny
engineering.material
regolith
010502 geochemistry & geophysics
01 natural sciences
Crustal Magnetization
Diffusion
Paramagnetism
Shock metamorphism
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology
Geochemistry and Petrology
Earth and Planetary Sciences (miscellaneous)
shock metamorphism
Single domain
Northwest Africa 1950
olivine
ComputingMilieux_MISCELLANEOUS
0105 earth and related environmental sciences
Reduction
Olivine
electron microscopy
Martian meteorites
Magnetic susceptibility
Single-Crystals
Geophysics
Meteorite
13. Climate action
Space and Planetary Science
Remanence
[SDU]Sciences of the Universe [physics]
engineering
impact
magnetic properties
Geology
Superparamagnetism
Melt
Subjects
Details
- ISSN :
- 0012821X
- Database :
- OpenAIRE
- Journal :
- Earth and Planetary Science Letters, Earth and Planetary Science Letters, Elsevier, 2007, 262 (1-2), pp.37-49. ⟨10.1016/j.epsl.2007.07.002⟩, Earth and Planetary Science Letters, 2007, 262 (1-2), pp.37-49. ⟨10.1016/j.epsl.2007.07.002⟩
- Accession number :
- edsair.doi.dedup.....29c523fc2a5e90fc668de92da7bb164a
- Full Text :
- https://doi.org/10.1016/j.epsl.2007.07.002⟩