Back to Search Start Over

First application of regression analysis to retrieve soil moisture from SMAP brightness temperature observations consistent with SMOS

Authors :
Yann Kerr
Peggy O'Neill
Ahmad Al Bitar
J. P. Wigneron
Amen Al-Yaari
Arnaud Mialon
G. De Lannoy
Thomas J. Jackson
Philippe Richaume
Nemesio Rodriguez-Fernandez
Simon Yueh
Interactions Sol Plante Atmosphère (UMR ISPA)
Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)
Centre d'études spatiales de la biosphère (CESBIO)
Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
NASA Goddard Space Flight Center (GSFC)
Hydrology and Remote Sensing Laboratory
US Department of Agriculture [Beltsville] (USDA)
Jet Propulsion Laboratory (JPL)
NASA-California Institute of Technology (CALTECH)
IEEE Geoscience and Remote Sensing Society (GRSS). USA.
Source :
IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS 2016 Advancing the understanding of our living planet, IGARSS 2016 Advancing the understanding of our living planet, IEEE Geoscience and Remote Sensing Society (GRSS). USA., Jul 2016, Pékin, China. ⟨10.1109/IGARSS.2016.7729417⟩, IGARSS
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; In this study, we used a multilinear regression approach to retrieve surface soil moisture from NASA's Soil Moisture Active Passive (SMAP) satellite data to create a global dataset of surface soil moisture which is consistent with ESA's Soil Moisture and Ocean Salinity (SMOS) satellite retrieved surface soil moisture. This was achieved by calibrating coefficients of the regression model using SMOS soil moisture and horizontal and vertical brightness temperatures (TB), over the 2013 — 2014 period. Next, this model was applied to recent SMAP TB data from 31/03/2015–08/09/2015. The retrieved surface soil moisture from SMAP (referred here to as SMAP-reg) was compared to the operational SMAP L3 surface soil moisture retrieved using the single channel algorithm. Both exhibit comparable temporal dynamics with a good agreement of correlation (correlation coefficient R mostly > 0.8) between the SMAP-reg and the operational SMAP L3 surface soil moisture products.

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS 2016 Advancing the understanding of our living planet, IGARSS 2016 Advancing the understanding of our living planet, IEEE Geoscience and Remote Sensing Society (GRSS). USA., Jul 2016, Pékin, China. ⟨10.1109/IGARSS.2016.7729417⟩, IGARSS
Accession number :
edsair.doi.dedup.....29bb9e240cad9227acc07bb30981f9ca
Full Text :
https://doi.org/10.1109/IGARSS.2016.7729417⟩